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1 Scope 
The present document provides technical descriptions of the digital signature schemes submitted to the National 
Institute of Standards and Technology (NIST) for the third round of their post-quantum cryptography standardization 
process. 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] NIST FIPS 197: "Advanced Encryption Standard (AES)". 

[i.2] NIST FIPS 180-4: "Secure Hash Standard". 

[i.3] NIST FIPS 202: "SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions". 

[i.4] NIST IR 8105: "Report on Post-Quantum Cryptography". 

[i.5] NIST FIPS 186-4: "Digital Signature Standard (DSS)". 

[i.6] NIST SP-56A: "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete 
Logarithm Cryptography". 

[i.7] NIST SP-56B: "Recommendation for Pair-Wise Key Establishment Schemes Using Integer 
Factorization Cryptography". 

[i.8] NIST: "Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography 
Standardization Process", December 2016. 

NOTE: Available at https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-
proposals-final-dec-2016.pdf. 

[i.9] NIST: "Post-Quantum Cryptography Standardization: Round 1 Submissions". 

NOTE: Available at https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions. 

[i.10] NIST IR 8240: "Status Report on the First Round of the NIST Post-Quantum Standardization 
Process". 

[i.11] NIST: "Post-Quantum Cryptography Standardization: Round 2 Submissions". 

NOTE: Available at https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions. 

[i.12] NIST IR 8309: "Status Report on the Second Round of the NIST Post-Quantum Standardization 
Process". 

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
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[i.13] NIST: "Post-Quantum Cryptography Standardization: Round 3 Submissions". 

NOTE: Available at https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions. 

[i.14] L. Lamport: "Constructing digital signatures from a one way function". Technical Report 
SRI-CSL-98. SRI International Computer Science Laboratory. 1979. 

[i.15] R. Merkle: "A Certified Digital Signature". CRYPTO "89, LNCS, Vol. 263. Springer, 
pages 218-238, 1989. 

[i.16] A. Fiat and A. Shamir: "How to Prove Yourself: Practical Solutions to Identification and Signature 
Problems". CRYPTO 86, LNCS, Vol. 435. Springer, pages 186-194, 1986. 

[i.17] ETSI GR QSC 001: "Quantum-Safe Cryptography (QSC); Quantum-Safe Algorithmic 
Framework". 

NOTE: Available at 
https://www.etsi.org/deliver/etsi_gr/QSC/001_099/001/01.01.01_60/gr_QSC001v010101p.pdf. 

[i.18] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler and D. Stehlé: 
"CRYSTALS-DILITHIUM: Algorithm Specifications and Supporting Documentation". NIST 
round 3 post-quantum submission. 

[i.19] V. Lyubashevsky: "Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based 
Signatures". Asiacrypt 2009, LNCS, Vol. 5912. Springer, pages 598-616. 

[i.20] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ricosset, G. 
Seiler, W. White and Z. Zhang: "FALCON: Fast-Fourier Lattice-based Compact Signatures over 
NTRU". NIST round 3 post-quantum submission. 

[i.21] C. Gentry, C. Peikert, and V. Vaikuntanathan: "Trapdoors for Hard Lattices and New 
Cryptographic Constructions". STOC 2008, ACM, pages 197-206. 

[i.22] J. Hoffstein, J. Pipher and J. H. Silverman: "NTRU: A Ring-Based Public Key Cryptosystem", 
ANTS-III, LNCS, Vol. 1423. Springer, pages 267-288, 1988. 

[i.23] D. Stehlé and R. Steinfeld: "Making NTRU as Secure as Worst-Case Problems over Ideal 
Lattices". EUROCRYPT 2011, LNCS, Vol. 6632, pages 27-47. 

NOTE: Available at https://eprint.iacr.org/2019/893.  

[i.24] J. Ding, M.-S. Chen, A. Petzoldt, D. Schmidt and B.-Y. Yang: "Rainbow: Algorithm Specification 
and Documentation". NIST round 3 post-quantum submission. 

[i.25] A. Kipnis, J. Patarin and L. Goubin: "Unbalanced Oil and Vinegar Signature Schemes". 
EUROCRYPT 1999, LNCS, Vol. 1592. Springer, pages 206-222. 

[i.26] A. Petzoldt, S. Bulygin, and J. Buchmann: "CyclicRainbow - a Multivariate Signature Scheme 
with a Partially Cyclic Public Key". INDOCRYPT 2010, LNCS, vol. 6498, pages 33 - 48. . 

[i.27] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret and J. Ryckeghem: "GeMSS: A 
Great Multivariate Signature Scheme". NIST round 3 post-quantum submission. 

[i.28] T. Matsumoto and H. Imai: "Public Quadratic Polynomial-Tuples for Efficient Signature-
Verification and Message-Encryption". EUROCRYPT 1988, LNCS, Vol. 330. Springer, 
pages 419-453. 

[i.29] J. Patarin: "Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP): Two New 
Families of Asymmetric Algorithm". EUROCRYPT 1996, LNCS, Vol. 1070. Springer, 
pages 33-48. 

[i.30] J. von zur Gathen and J. Gerhard: "Modern Computer Algebra (3. Ed.)". Cambridge University 
Press 2013. 

[i.31] J.-C Faugère, L. Perret and J. Ryckeghem: "Software Toolkit for HFE-based Multivariate 
Schemes". IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, Vol. 3., pages 257-304. 

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://www.etsi.org/deliver/etsi_gr/QSC/001_099/001/01.01.01_60/gr_QSC001v010101p.pdf
https://eprint.iacr.org/2019/893
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[i.32] G. Zaverucha, M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger and D. 
Slamanig: "The Picnic Algorithm Signature Specification". NIST round 3 post-quantum 
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[i.33] I. Giacomelli, J. Madsen and C. Orlandi: "ZKBoo : Faster Zero-Knowledge for Boolean Circuits". 
USENIX Security 2016, USENIX Association, pages 1069-1083. 
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3 Definition of terms, symbols and abbreviations 

3.1 Terms 
Void. 

https://eprint.iacr.org/2020/1424
https://eprint.iacr.org/2021/655
http://precision.moscito.org/by-publ/recent/response-ward.pdf


 

ETSI 

ETSI TR 103 616 V1.1.1 (2021-09) 9 

3.2 Symbols 
For the purposes of the present document, the following symbols apply: 

� ≔ � Variable � is assigned the value of �  
� = � The values of � and � are equal 
� ≠ � The values of � and � are not equal 
� ∥ � The concatenation of � and � 
� A finite field 
��  A finite field modulo � 
ℤ The ring of integers 
ℤ� The ring of integers modulo � 
�  A ring of polynomials  
��  A ring of polynomials modulo �  
��

�×� The set of � × � matrices with coefficients in �� 
��

� The set of 1 × � matrices with coefficients in �� 
�� Centered binomial distribution of width � 

GL�×�	�� 
 The set of � × � invertible matrices whose coefficients are over �� 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AES Advanced Encryption Standard  
CMA  Chosen Message Attack  
CPU Central Processing Unit 
CTR CounTeR  
EUF  Existential Unforgeability 
FFT Fast Fourier Transform 
FIPS Federal Information Processing Standards 
FORS  Forest Of Random Subsets 
FS Fiat-Shamir 
GPV Gentry-Peikert-Vaikuntanathan 
GR  Group Report  
HFE Hidden Field Equation  
IDS Identification Scheme 
KEM Key Encapsulation Mechanism  
KMA  Known Message Attack 
KOA  Key Only Attack 
MLWE Module Learning With Errors 
MPC Multi-Party Computation 
MQ Multivariate Quadratic 
NIST National Institute of Standards and Technology 
NTT Number Theoretic Transform 
OTS One-Time Signature 
PKE  Public-Key Encryption 
PoSSo Polynomial System Solving 
PQC Post-Quantum Cryptography  
PRF Pseudo Random Function 
QROM Quantum Random Oracle Model 
QSC Quantum-Safe Cryptography 
ROM Random Oracle Model 
SHA  Secure Hash Algorithm 
SHAKE Secure Hash Algorithm and KECCAK 
SIS Short Integer Solution 
SUF  Strong existential Unforgeability 
UOV Unbalanced Oil and Vinegar 
UUF  Universal Unforgeability 
WOTS  Winternitz One-Time Signature  
XOF eXtendable Output Function  
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XOR eXclusive OR 
ZK Zero-Knowledge 

4 Introduction 
The National Institute of Standards and Technology (NIST), an agency of the U.S. Department of Commerce, is 
responsible for producing cryptographic standards for the protection of sensitive U.S. Federal Government information. 
NIST standards, such as the Advanced Encryption Standard (AES) [i.1] and Secure Hash Algorithm (SHA) standards 
[i.2] and [i.3], are used globally in many different protocols and products.  

In April 2016, NIST announced their intention [i.4] to augment their existing portfolio of public-key cryptography 
standards [i.5], [i.6] and [i.7] by developing new standards for post-quantum cryptography. In December 2016, they 
initiated the so-called NIST Post-Quantum Cryptography (PQC) standardization process; a competition-like process 
with a call for proposals [i.8] for digital signatures, Public Key Encryption (PKE) schemes, and Key Encapsulation 
Mechanisms (KEMs), that will remain secure even in the presence of a cryptographically relevant quantum computer. 
The goal of the process is to perform several rounds of public evaluation over a three- to five-year period, and select 
one or more acceptable algorithms for standardization based on that evaluation.  

NIST's deadline for submissions was November 2017. They received 69 candidates that met the minimum acceptance 
criteria and submission requirements: 20 digital signature schemes and 49 PKE/KEMs. Five submissions were quickly 
broken and formally withdrawn from the process by their designers. This left a total of 64 first round candidates [i.9]. In 
January 2019, NIST announced [i.10] that 26 of the first round candidates would progress to the second round of 
evaluation: 9 digital signature schemes and 17 PKE/KEMs [i.11].  

In July 2020, NIST announced [i.12] that 15 candidate algorithms would progress to the third round of evaluation. 
These were split into seven finalists and eight alternate candidates. NIST described the finalists as the algorithms they 
consider to be the most promising for the majority of use cases, and the most likely to be ready for standardization soon 
after the end of the third round. The seven finalists [i.13] included three digital signature schemes and four PKE/KEMs. 
The alternate candidates were described as having potential for future standardization, but most likely after a fourth 
round of evaluation. The eight alternate candidates included three digital signature schemes and five PKE/KEMs. 

In June 2021, NIST declared that the third round will be finalized by the beginning of 2022. Following recent attacks 
against multivariate schemes [i.39] and [i.40], NIST also announced that they were considering selecting an alternate 
signature for standardization at the end of third round and issuing a call for new digital signature submissions in 2022.  

The purpose of the present document is to give concise descriptions of the six signature schemes remaining in the third 
round of NIST's standardization process. ETSI TR 103 823 [i.45] provides similar descriptions of the nine remaining 
PKE/KEMs. 

The three digital signature finalists are: 

• Dilithium (see clause 6.1) 

• FALCON (see clause 6.2) 

• Rainbow (see clause 6.3) 

The three digital signature alternate candidates are: 

• GeMSS (see clause 7.1) 

• Picnic (see clause 7.2) 

• SPHINCS+ (see clause 7.3) 

Each of these schemes has a different profile in terms of security properties and performance characteristics, so it is 
expected that some of these schemes will be more suited to specific deployment scenarios than others.  

The descriptions provided in the present document are not intended to be substitutes for the detailed specifications 
submitted to NIST. Instead, the emphasis is on clear mathematical descriptions that facilitate easy comparison of the 
different schemes. Implementation details, such as how to encode polynomials as bit-strings, have been omitted 
wherever possible. As such, some of the descriptions differ from the submitted specifications, in terms of level of 
abstraction, use of notation, and choice of variable names. 
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It is expected that details of some of the schemes, such as specific parameter choices, will change during the third round 
of evaluation, so for consistency the descriptions are based on the official submission packages provided to NIST at the 
beginning of the third round [i.13]. 

5 Background 

5.1 Terminology 
A digital signature scheme consists of a triple of algorithms: 

• Key generation (KeyGen). Outputs a new public and private key pair. 

• Sign. Takes a private key and message as input and outputs a signature. 

• Verify. Takes a public key, a message and a signature as input and outputs either 'accept' or 'reject'. 

5.2 Families of post-quantum algorithms 
The cryptosystems that have progressed to the third round of the NIST process can be classified into the following 
families: 

• Code-based schemes. The security of code-based schemes depends on the difficulty of decoding vectors to 
find the closest codeword or shortest error vector. Code-based cryptography lends itself more naturally to the 
construction of PKE schemes and KEMs than to digital signature algorithms. 

• Isogeny-based schemes. The security of isogeny-based schemes depends on the difficulty of recovering a 
secret isogeny between a pair of elliptic curves. Isogeny-based cryptography lends itself more naturally to the 
construction of PKE schemes and KEMs than to digital signatures, though there has been some progress in this 
area.  

• Lattice-based schemes. The security of lattice-based schemes depends on the difficulty of finding vectors in a 
lattice that are relatively short, or relatively close to some target vector. Lattice-based signature schemes 
generally fall into two categories: NTRU-style [i.22] schemes, such as FALCON, which use lattices that have 
been specifically constructed to contain private short vectors, and Module Learning With Errors (MLWE) 
schemes such as Dilithium which use particular classes of random lattices. In many cases lattice-based 
schemes admit worst-case to average-case security reductions, though these reductions are often not relevant 
to proposed parameter sets (see ETSI TR 103 823 [i.45]). 

• Multivariate schemes. The security of multivariate schemes depends on the difficulty of solving systems of 
quadratic or higher degree multivariate polynomials (PoSSo problem, also known as the MQ problem for 
quadratic equations). Multivariate cryptography lends itself more naturally to the construction of digital 
signatures than to PKE schemes or KEMs. Rainbow and GeMSS are multivariate-based signature schemes. 

• Symmetric schemes. The security of such schemes depends on the security of symmetric cryptographic 
primitives such as hash functions and block ciphers. Symmetric cryptography only lends itself to the 
construction of digital signatures. Examples include SPHINCS+ and Picnic. 

5.3 Security categories 
NIST have provided guidance on the evaluation criteria they intend to apply to candidate submissions [i.8]. As part of 
this guidance they have defined the following security categories in terms of the (classical or quantum) resources 
required to attack different NIST-approved symmetric primitives: 

• Category 1. Resources equivalent to or greater than key recovery for AES-128. 

• Category 2. Resources equivalent to or greater than collision search for SHA3-256. 

• Category 3. Resources equivalent to or greater than key recovery for AES-192. 
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• Category 4. Resources equivalent to or greater than collision search for SHA3-384. 

• Category 5. Resources equivalent to or greater than key recovery for AES-256.  

NIST recommended that submissions include parameter sets that meet the requirements for categories 1, 2 and/or 3, as 
they believe that these categories will provide sufficient security for the foreseeable future. However, to demonstrate 
flexibility, and to protect against future cryptanalytic breakthroughs, NIST also recommended that submissions include 
at least one parameter set that provides a substantially higher level of security. Submitters were asked to include 
justifications for the security categories claimed for their proposed parameter sets. 

5.4 Security properties 
Digital signatures are typically intended to provide authentication, integrity and non-repudiation of data. The main 
security goal that is relevant for signatures is existential unforgeability under chosen message attack (see annex A for 
further discussions on security goals). This is usually modelled as a game: 

• Existential Unforgeability under Chosen Message Attack (EUF-CMA) for signatures. The attacker can 
request valid signatures of messages of their choice. The attacker's goal is to exhibit a valid signature for any 
message not previously queried. The scheme is EUF-CMA secure it the attacker cannot do this using less 
resources than the security level.  

To construct some proofs of security it is necessary to make assumptions about or use idealized versions of certain 
cryptographic primitives; this can mean the proof does not apply to a concrete implementation. In particular, in the 
Random Oracle Model (ROM) hash functions are modelled as ideal entities, referred to as random oracles, which 
respond to new queries with answers selected uniformly at random from the output domain, and respond to previously 
seen queries with the answer that was given the first time the query was received. 

In the ROM it is assumed that adversaries interact classically with random oracles, but in the Quantum Random Oracle 
Model (QROM) it is assumed that adversaries can query a random oracle in a quantum superposition of states. 
Although the QROM affords an adversary more computational power, it can be hard to compare proofs in the ROM to 
proofs in the QROM, particularly if it is possible to construct a tight proof in the ROM but not the QROM. 

NIST have stated that they intend to standardize at least one EUF-CMA signature scheme. It is further assumed that an 
attacker has access to no more than 2�� chosen signed messages (though attacks requiring more messages will be taken 
into consideration). NIST place more emphasis on the ROM model rather than QROM. NIST has not required proof of 
EUF-CMA security as part of a submission, but does give consideration to such proofs. 

5.5 Frameworks for constructing digital signatures 
The digital signature algorithms that have progressed to the third round of the NIST process can be classified by family: 
lattice-based, multivariate-based or symmetric (see clause 5.2). Another way to categorize these schemes is to consider 
the framework used to construct these primitives (see also Table 1): 

• Hash-and-sign. These schemes are constructed from trapdoor one-way functions. FALCON [i.20], 
GeMSS [i.27] and Rainbow [i.24] are examples of schemes within this framework. 

• Hash-based. These schemes follow the work of Lamport [i.14] and Merkle [i.15] and construct a signature 
from a hash function. SPHINCS+ [i.37] is an example of a scheme within this framework. 

• Fiat-Shamir. These schemes are constructed by using the Fiat-Shamir transform [i.16] together with a post-
quantum Identification Scheme (IDS). Dilithium [i.18] and Picnic [i.32] are examples of schemes within this 
framework. 

Table 1: Categorization of digital signature schemes 
based on their underlying hard problems and design frameworks 

 Lattice-based Multivariate-based Symmetric-based 

Hash-and-sign FALCON GeMSS 
Rainbow  

Hash-based   SPHINCS+ 
Fiat-Shamir Dilithium  Picnic 
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Annex B provides further discussions on the categorization sketched in the present clause.  

5.6 Finalists and alternate candidates at a glance 
Table 2 contains a summary of each of the NIST digital signature finalists. 

Table 2: Summary of finalists 

Scheme Family Type Structure 
Categories Security  

EUF-CMA Comments 
1 2 3 4 5 

DILITHIUM Lattice Fiat-Shamir Module   Y Y  Y Y  
FALCON Lattice Hash-and-sign Ring Y    Y Y  
Rainbow Multivariate Hash-and-sign UOV Y  Y  Y Y Note  

NOTE: A new result [i.39] challenges the claimed security for Rainbow (see clause C.2 for a short discussion).  
 

Table 3 contains a summary of each of the NIST digital signature alternates. 

Table 3: Summary of alternate candidates 

Scheme Family Type Structure 
Categories Security 

EUF-CMA Comments 
1 2 3 4 5 

GeMSS Multivariate Hash-and-sign HFE Y  Y  Y Y Note 1 
Picnic Symmetric Fiat-Shamir Block cipher Y  Y  Y Y Note 2 

SPHINCS+ Symmetric Stateless 
hash-based 

Hash 
function Y  Y  Y Y  

NOTE 1: A new result [i.40] challenges the claimed security of GeMSS (see clause C.2 for a short discussion). 
NOTE 2: Clause C.3 discusses the impact of a new result [i.43] on the security of Picnic. 
 

6 Finalists 

6.1 Dilithium 

6.1.1 Introduction 

CRYSTALS is a package that includes KYBER, a Key Encapsulation Mechanism [i.45] and the digital signature 
scheme Dilithium [i.18]. Dilithium uses the Fiat-Shamir with abort [i.19] framework to derive a signature scheme from 
a compact lattice-based IDS (clause B.3).  

The security of Dilithium is based on the hardness of MLWE. Let �� denote the polynomial ring ℤ���
/(�� + 1) for a 
power-of-two � and prime �. A MLWE sample is a pair of the form ��,�� + ��, where � ∈ ��

�×ℓ is a public matrix 
consisting of polynomials whose coefficients are sampled uniformly at random from ℤ�, and � ∈ ��

ℓ , � ∈ ��
� are private 

vectors of polynomials whose coefficients are sampled from a small distribution over ℤ�. The MLWE problem asserts 
that it is computationally hard to distinguish MLWE samples of the form ��,�� + �� from pairs of the form ��,��, 
where � ∈ ��

� is a vector consisting of polynomials sampled uniformly at random from ��. 

6.1.2 Public parameters 

The main parameters for Dilithium are: 

• �, the dimension of the polynomial ring ��; 

• �, the modulus of the polynomial ring ��; 

• � and ℓ, ranks of the vectors over ��; 

• �, the bound on the size of the coefficients for key generation; 
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• �� and ��, bounds on the sizes of the coefficients for signing; and 

• �, the reduction in the bounds for signing and verification. 

6.1.3 Auxiliary primitives 

Dilithium makes use of several auxiliary, symmetric primitives: 

• �, a 256-bit cryptographic hash function; 

• PRF, a pseudorandom function; and 

• XOF, an extendable output function. 

The instantiations of these primitives from the specification are described in Table 4. 

Table 4: Auxiliary symmetric primitives for Dilithium 

Primitive SHAKE variant AES variant 
� SHAKE-256 

PRF SHAKE-256 
XOF SHAKE-128 AES-256 in CTR mode 

 

The AES-based XOF is included to improve performance on platforms that provide hardware support for AES. 

Each � ∈ ��
� can be decomposed as:  

� ≔ �� ∙ 2�� + �	 

where the coefficients of �	 lie in {-�� , … , �� }. Dilithium defines the functions HighBits��, 2�� � ≔ �� and 
LowBits��, 2�� � ≔ �	. 

Dilithium also makes use of a hash function ℋ ∶  �0, 1�∗ →  ℬ
 that takes arbitrary bit strings as input and returns an 
element of ℬ
, the set of polynomials in �� that have ℎ coefficients that are either −1 or 1, and the rest are 0. This is 
constructed from � and the XOF (see [i.18] for a precise description). 

6.1.4 Dilithium.KeyGen 

Input: Security level 

Output: Public key pk ∈  �0, 1���� ×  ��
� 

Private key sk ∈ �0, 1����  ×  ��
�  ×  ��

ℓ  ×  ��
� 

1) Use PRF to sample two vectors �� ∈  ��
ℓ and �
 ∈ ��

� with coefficients of size at most �. 

2) Choose a uniformly random seed � ∈ {0, 1}���. 

3) Expand the seed � using XOF to produce the public matrix � ∈ ��
�×ℓ. 

4) Compute � ≔ ��� + �
 ∈  ��
�. 

The public key is pk ≔ ��, � � ∈  �0, 1���� ×  ��
�. The private key is: 

 sk ≔ (�, �, �� , �
) ∈ �0, 1����  ×  ��
�  ×  ��

ℓ  ×  ��
�. 

NOTE:  The Dilithium submission includes additional public key compression where pk only contains the most 
significant bits of �.  
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6.1.5 Dilithium.Sign 

Input: Private key sk ∈ �0, 1���� × ��
� × ��

ℓ × ��
� 

Message � ∈  {0, 1}∗ 

Output: Signature sig ∈ ��
ℓ × �� 

1) Parse the private key as sk ≔ (�, �, �� , �
,). 

2) Expand the seed � using XOF to produce the public matrix � ∈ ��
�×ℓ. 

3) Sample � ∈  ��
ℓ  with coefficients in �−��, … , ���. 

4) Compute �� ≔ HighBits���, 2�� �  ∈ ��
�. 

5) Compute � ≔ ℋ(�||��) ∈ ℬ
. 

6) Compute � ≔ � + ��� ∈ ��
ℓ . 

7) If  ∥ � ∥�≥ �� − � or ∥ LowBits(�� − ��)  ∥�≥ �� − �, then go to step 1. 

The signature is sig ≔ ��, ��  ∈ ��
ℓ × �� . 

NOTE 1: Signing can be deterministic or randomized depending on how � ∈ ��
ℓ  is generated in step 3. In either 

case, it is expanded from a seed using XOF. 

NOTE 2: When the public key is in compressed form then the signer sends the verifier a hint   that allows them to 
compute the high-order bits of �� − ��. 

6.1.6 Dilithium.Verify 

Input: Public key pk ∈  �0, 1���� × ��
�  

Message � ∈ {0, 1}∗ 
Signature sig ∈  ��

ℓ × �� 

Output:  !��"#$ or �"%"�$ 
1) Parse the public key as pk ≔ ��, � � ∈  �0, 1���� × ��

�. 

2) Parse the signature as sig ≔ ��, �� ∈ ��
ℓ × ��. 

3) Expand the seed � using XOF to produce the public matrix � ∈ ��
�×ℓ. 

4) Compute ��
� ≔ HighBits��� − &�, 2�� � ∈ ��

�. 

5) If � =  ℋ(�|| ��
� ) and ∥ � ∥�< �� − � then !��"#$, else �"%"�$. 

6.1.7 Parameters and performance 

The Dilithium submission [i.18] proposes three parameter sets (see Table 5).  

Table 5: Proposed parameters for Dilithium 

Parameter set � � (�, �) � �� �� � Claimed security 
Dilithium-2 256 8 380 417 (4,4) 2 2�� (	 − 1)/88 78 Category 2 
Dilithium-3 256 8 380 417 (6,5) 4 2�� (	 − 1)/32 196 Category 3 
Dilithium-5 256 8 380 417 (8,7) 2 2�� (	 − 1)/32 120 Category 5 

 

The three parameter sets lead to the public key and signature sizes listed in Table 6. 
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Table 6: Dilithium public key and signature sizes 

Parameter set Public key Signature 
Dilithium-2 1 312 bytes 2 420 bytes 
Dilithium-3 1 952 bytes 3 293 bytes 
Dilithium-5 2 592 bytes 4 595 bytes 

 

The Dilithium submission also proposes two challenge parameter sets with claimed security below Category 1 and two 
extended security parameter sets with claimed security significantly above Category 5. 

The Dilithium submission package includes a reference implementation and optimized AVX2 implementation. All 
cycle counts in Table 7 were obtained from the AVX2 optimized implementation using SHAKE-128 for the XOF on a 
2,6 GHz Intel® Core™ i7-6700 processor with TurboBoost disabled. 

Table 7: Dilithium AVX2 performance figures 

Parameter set KeyGen Sign Verify 
Dilithium-2 124 000 cycles 259 000 cycles 118 000 cycles 
Dilithium-3 256 000 cycles 429 000 cycles 179 000 cycles 
Dilithium-5 298 000 cycles 539 000 cycles 280 000 cycles 

 

6.2 FALCON 

6.2.1 Introduction 

FALCON [i.20] is an optimized instantiation of the GPV framework described in clause B.1 with NTRU lattices that 
uses a new trapdoor sampler called "Fast Fourier sampling". The underlying hard problem is the Short Integer Solution 
(SIS) problem over NTRU lattices [i.17]. 

6.2.2 Public parameters  

FALCON is parameterized by: 

• �, the dimension of the polynomial ring � ≔ ℤ��
/(�� + 1); 

• �, the modulus of the polynomial ring �� ≔ ℤ���
/(�� + 1);  

• ', the standard deviation of the private polynomials; and  

• �, the verification bound.  

Following the provable NTRU version of [i.23], FALCON chooses � to be a power of two and � to be prime such that 
� ≡ 1 (mod 2�). The standard deviation for the private polynomials is ' ≔ 1,17(�/2�. 

6.2.3 Auxiliary primitives  

FALCON makes use of an auxiliary, symmetric primitive:  

• XOF, an extendable output function. 

The instantiation of this primitive from the specification is described in Table 8. 

Table 8: Auxiliary symmetric primitive for FALCON 

Primitive Description 
XOF SHAKE256 

 

FALCON makes use of a hash function ℋ: �0, 1�∗ → �� constructed from the XOF (see [i.20] for a precise description).  
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6.2.4 Trapdoor sampling 

FALCON signs a message by using ℋ to hash it to polynomial � ∈ � and then sampling small polynomials )�, )� ∈ � 
such that )� + )�ℎ = � in ��, where ℎ ∈ �� is the public key. 

The polynomials )�, )� are obtained from an efficient trapdoor sampler using a private basis: 

 � ≔ *+ −,
- . / 

for the public NTRU lattice: 

 0 ≔ 1−ℎ 1
� 0

2 

defined by ℎ ∈ ��. The distribution of polynomials produced by the sampler will be indistinguishable from a discrete 
Gaussian distribution of standard deviation '′ provided that '′ is slightly larger than ‖�‖��, the Gram-Schmidt norm of 
the basis �. 

NOTE 1: FALCON uses the Fast Fourier Transform (FFT) to implement the arithmetic in key generation and in the 
efficient trapdoor sampler used for signing. This is a complex-valued transform optimized for 
polynomials in ℚ��
/(�� + 1) and is not the same as the Number Theoretic Transform (NTT) in ��. 

NOTE 2: FALCON uses a recursive 040∗ decomposition in its fast Fourier sampler rather than the Gram-Schmidt 
decomposition used in the original Klein sampler. This decomposition is stored in a structure called a 
"FALCON tree". 

6.2.5 FALCON.KeyGen 

Input: Security level 

Output: Public key pk ∈ �� 
Private key sk ∈ � × � × � × � 

1) Sample polynomials ,,+ ∈ � from the discrete Gaussian distribution over � with standard deviation '. 

2) Restart if , is not invertible in ��. 

3) Find polynomials .,- ∈ � such that ,- − +. = � in �. 

4) Restart if the polynomials . and - were not found in step 3 or if: 

 5*+ −,
- −./5��

�

>  2�'�. 

5) Compute ℎ ≔ +,�� ∈  ��. 

The public key is pk ≔ ℎ ∈ ��. The private key is sk ≔ �,,+,.,-� ∈ � × � × � × �. 

NOTE 1: The private polynomials ,,+,. and - are stored in the FFT domain. 

NOTE 2: Key generation also includes computation of the FALCON tree used by the efficient trapdoor sampler. 
The FALCON tree forms part of the private key, and the nodes of the tree are stored in the FFT domain. 

6.2.6 FALCON.Sign 

Input: Private key )� ≔ �,,+,.,-� ∈ � × � × � × � 
Message � ∈ {0, 1}∗. 

Output: Signature sig ∈ � × {0, 1}��	. 

1) Choose a uniformly random 6 ∈ {0, 1}��	. 

2) Hash � ≔ ℋ�6 ∥ � � ∈ ��. 



 

ETSI 

ETSI TR 103 616 V1.1.1 (2021-09) 18 

3) Use the trapdoor sampler to find small polynomials )�, )� ∈ � such that )� + )�ℎ = � in ��. 

4) Restart if ‖()�, )�)‖� > �. 

The signature is sig ≔ ()�, 6) ∈ � × {0, 1}��	. 

NOTE: The FALCON submission includes compression techniques to reduce the size of the signature. 

6.2.7 FALCON.Verify 

Input: Public key pk ≔ ℎ ∈ �� 
Message � ∈ {0, 1}∗  
Signature sig ≔ ()�, 6) ∈ � × �0, 1���	.  

Output: !��"#$ or �"%"�$. 
1) Hash � ≔ ℋ�6 ∥ � � ∈ ��. 

2) Compute )� ≔ � − )�ℎ ∈ �� and lift to a polynomial in � with coefficients in {−�� − 1�/2, … �� − 1�/2}. 

3) If ‖()�, )�)‖� ≤ � then !��"#$, else �"%"�$.  

6.2.8 Parameters and performance 

The FALCON submission [i.20] describes two set of parameters (see Table 9). 

Table 9: Proposed parameters for FALCON 

Parameter set � � �  Claimed security 
FALCON-512 256 12 289 34 034 726 Category 1 

FALCON-1024 256 12 289 70 265 242 Category 5 
 

The two parameter sets lead to the private key, public key and signature sizes listed in Table 10. 

Table 10: FALCON private key, public key and signature sizes 

Parameter set  Private key Public key  Signature 
FALCON-512 32 bytes 897 bytes 666 bytes 

FALCON-1024 32 bytes 1 793 bytes 1 280 bytes 
 

The submission package includes a reference implementation (that uses AVX2). The performance figures in Table 11 
were measured on a 2,3 GHz Intel® Core™ i5-8259U. 

Table 11: Falcon AVX2 performance figures 

Parameter set KeyGen Sign Verify  
FALCON-512 18 722 000 cycles 386 678 cycles 82 340 cycles 

FALCON-1024 63 135 000 cycles 789 564 cycles 168 498 cycles 
 

6.3 Rainbow 

6.3.1 Introduction 

Rainbow is a multivariate signature scheme [i.24] that generalizes the Unbalanced Oil and Vinegar (UOV) scheme 
[i.25]. The public key of Rainbow is a set of non-linear equations; the verification process involves evaluating the 
public-key polynomials; and the signing process involves solving a system of linear equations. A recent result [i.39] 
seems to challenge the security of the parameters proposed in the Rainbow round 3 submission (see clause C.2 for a 
short discussion). 
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6.3.2 Public parameters  

Rainbow is parameterized by: 

• �, a prime power specifying the finite field ��; 

• 7, the number of layers; 

• 8�  < 8� < ⋯ < 8�  < 8���, the number of vinegar variables in each layer; and 

• ), the bit length of the random salt. 

6.3.3 Auxiliary primitives 

Rainbow makes use of two auxiliary, symmetric primitives: 

• �, a cryptographic hash function; and 

• PRF, a pseudorandom function. 

The instantiations of these primitives from the specification are described in Table 12. 

Table 12: Auxiliary symmetric primitives for Rainbow 

Primitive Category 1 Category 3 Category 5 
� SHA-256 SHA-384 SHA-512 

PRF AES-256 in CTR mode 
 

Rainbow also makes use of a hash function ℋ: �0, 1�∗ → ��
� constructed from � (see [i.24] for a precise description). 

Rainbow follows the general framework described in clause B.1. The inner polynomials ,����, … , ,� ∈ ��[��, …, ��] 
have a layered structure. Define the index sets 9ℓ  ≔ {1, … , 8ℓ} and :ℓ  ≔ {8ℓ + 1, … , 8ℓ��}, for all 1 ≤ ℓ ≤ 7. Let 
;ℓ  ≔ |:ℓ| be the number of oil variables in the ℓth layer , � ≔ 8��� be the total number of variables, and < ≔ � − 8� 
be the total number of equations. For all 1 ≤ ℓ ≤ 7, the ℓth layer is a set of ;ℓ quadratic polynomials in 8ℓ +;ℓ 
variables indexed by variables in 9ℓ⋃:ℓ. Each layer has a specific shape so that specializing the vinegar variables 
indexed by 9ℓ leads to a set of ;ℓ linear polynomials in the ;ℓ oil variables indexed by the set :ℓ.  

Given �� = ��
�, the main task in the signature process is to find a solution to the system: 

 
 ,�������, … , ��� = �′�

⋮
,�(��, … , ��) = �′�

 

if one exists. 

Due to the special structure of the polynomials  ,����, …, ,� ∈ ��[��, …, ��], this can be done in polynomial time. The 
signer fixes the vinegar variables and finds the remaining components by solving a system of linear equations. The 
function Inv(,���� − �′�, …, ,�−�′�) corresponds to this process. It returns ()′�, … , )′�) ∈ ��

� such that 
 ,����()��, … , )��) = �′�, … ,,� ()′� , … , )′�) = �′� and 0 if no solution exists.  

6.3.4 Rainbow.KeyGen 

Input: Security level 

Output: Public key pk ≔ (#�, …, #� , )) ∈ �����, … , ��
 � ×  ℕ 
Private key sk ≔ (=,>, ))  ∈ GL�×�	�� 
 × GL�×�	��
 ×  ℕ 

1) Use PRF to sample a pair of invertible matrices (=,>)  ∈ GL�×�	�� 
 × GL�×�	��
. 
2) Use PRF to generate inner polynomials ,����, …, ,� ∈ ��[��, …, ��] with the Rainbow shape. 
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3) Compute the public key polynomials �#�, … , #�� ≔  (,����((��, … , ��)=), … , ,�((��, … , ��)=))> ∈

�����, … , ��
 �. 

The public key is pk ≔ (#�, …, #� , )) ∈ �����, … , ��
 � ×  ℕ. The private key sk ≔ (=,>, ))  ∈ 
GL�×�	�� 
 × GL�×�	��
 ×  ℕ. 

NOTE: The specification [i.24] describes three variants of Rainbow: a Standard version where the public key is 
explicitly described as polynomial equations and two variants (CZ-Rainbow and Compressed). The 
key-pair generation process described in the present clause corresponds to Standard Rainbow. In the 
CZ-Rainbow and Compressed variants, the size of the public key is reduced by partially generating the 
polynomials from a random seed [i.26].  

6.3.5 Rainbow.Sign 

Input: Private key sk ≔ (=,>, ))  ∈ GL�×�	��
 × GL�×�	��
 ×  ℕ 
Message � ∈  {0, 1}∗ 

Output: Signature sig ≔ �)�, … , )� , 6� ∈  ��
� × {0, 1}ℓ 

1) Use PRF to sample 6 ∈  {0, 1}�. 

2) Compute � ≔ (�� , … ,��) = ℋ(ℋ��) ∥ ��) ∈ ��
�. 

3) Compute �� ≔ �>�� ∈ ��
�. 

4) If Inv(,���� − �′�, …, ,�−�′�) = 0 then go to step 1. 

5) Set ()′�, … , )′�) ≔ Inv(,���� − �′�, …, ,�−�′�) ∈ ��
�. 

6) Compute ()�, … , )�) ≔ ()′�, … , )′�) =�� ∈ ��
�. 

The signature is sig ≔ �)�, … , )� , 6� ∈  ��
� × {0, 1}ℓ. 

6.3.6 Rainbow.Verify 

Input: Public key pk ≔ (#�, …, #� , )) ∈ �����, … , ��
 � ×  ℕ 
Message � ∈  {0, 1}∗ 
Signature sig ≔ �)�, … , )� , 6� ∈  ��

� × {0, 1}�. 

Output: !��"#$ or �"%"�$. 
1) Compute � ≔ (�� , … ,��) = ℋ(ℋ��) ∥ 6� ∈ ��

�. 

2) Compute �� ≔ ( #��)�, … , )��, … , #�  �)�, … , )��) ∈ ��
�. 

3) If  �� = � then !��"#$ else �"%"�$. 

6.3.7 Parameters and performance 

The Rainbow submission [i.24] proposes three sets of parameters (see Table 13). 

Table 13: Proposed parameters for Rainbow 

Parameter set � 
 �� �� �� Claimed security 
Rainbow-I 2�  2 36 32 32 Category 1 
Rainbow-III 2� 2 68 32 48 Category 3 
Rainbow-V 2� 2 68 32 48 Category 5 

 

These parameter sets lead to the private key, public key and signature sizes listed in Table 14. 
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Table 14: Rainbow private key, public key and signature sizes 

Parameter set Private key Public key Signature Comments 
Rainbow-I 101 200 bytes 157 800 bytes 528 bits Notes 1 and 4 
Rainbow-III 611 300 bytes 861 400 bytes 1 312 bits Notes 2 and 4 
Rainbow-V 1 375 700 bytes 1 885 400 bytes 1 696 bits Notes 3 and 4 

NOTE 1: CZ-Rainbow reduces the size of the Category 1 public key to 58 800 bytes. 
NOTE 2: CZ-Rainbow reduces the size of the Category 2 public key to 258 400 bytes. 
NOTE 3: CZ-Rainbow reduces the size of the Category 3 public key to 523 600 bytes. 
NOTE 4: Compressed Rainbow reduces the size of the private key to 32 bytes. 
 

The submission package includes reference and optimized implementations using AVX2 instructions. Tables 15, 16 and 
17 give the performance figures obtained for the optimized implementation on a 3,60 GHz Intel® Xeon® CPU E3-1275 
processor. 

Table 15: Rainbow AVX2 performance figures 

Parameter set KeyGen Sign Verify 
Rainbow-I 9 900 000 cycles 67 000 cycles 34 000 cycles 
Rainbow-III 52 000 000 cycles 285 000 cycles 132 000 cycles 
Rainbow-V 192 000 000 cycles 739 000 cycles 392 000 cycles 

 

Table 16: CZ-Rainbow AVX2 performance figures 

Parameter set KeyGen Sign Verify 
Rainbow-I 10 700 000 cycles 67 000 cycles 3 500 000 cycles 
Rainbow-III 64 000 000 cycles 285 000 cycles 20 000 000 cycles 
Rainbow-V 235 000 000 cycles 739 000 cycles 47 000 000 cycles 

 

Table 17: Compressed Rainbow AVX2 performance figures 

Parameter set KeyGen Sign Verify 
Rainbow-I 10 700 000 cycles 7 000 000 cycles 3 500 000 cycles 
Rainbow-III 64 000 000 cycles 41 000 000 cycles 20 000 000 cycles 
Rainbow-V 235 000 000 cycles 118 000 000 cycles 47 000 000 cycles 

 

NOTE:  Due to the analysis in [i.39], the Round 3 parameters presented in Table 13 might need to be updated (see 
clause C.2 for a short discussion). 

7 Alternate Candidates 

7.1 GeMSS 

7.1.1 Introduction 

GeMSS [i.27] is a multivariate-based signature scheme designed from a variant of the Hidden Field Equations (HFE) 
[i.29] with vinegar and minus modifiers (HFEv-). The public key of GeMSS is a set of multivariate quadratic binary 
polynomials. The verification process involves evaluating the public key polynomials whilst producing a signature 
reduces to find the roots of a univariate polynomial. A recent result [i.40] challenges the security of the parameters 
proposed in the GeMSS round 3 submission (see clause C.2). 

7.1.2 Public parameters 

GeMSS is parameterized by: 

• D, the degree of a secret univariate polynomial; 
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• �, the degree of a finite field extension; 

•  8, the number of vinegar variables; 

• <, the number of equations in the public key (< ≤ �); and  

• �, a repetition factor; 

7.1.3 Auxiliary primitives  

GeMSS makes use of two auxiliary, symmetric primitives: 

• �, a cryptographic hash function; and 

• PRF, a pseudorandom function. 

The instantiations of these primitives from the specification are described in Table 18. 

Table 18: Auxiliary symmetric primitives for GeMSS 

Primitive Category 1 Category 2 Category 3 Category 5 
� SHA3-256 SHAKE-512 

PRF SHAKE-128 SHAKE-256 
 

GeMSS also makes use of a hash function ℋ: �0, 1�∗ → ��
� constructed from � (see [i.27] for a precise description). 

Following the terminology of clause B.1, the inner polynomials ,�, …, ,� ∈ ��[��, …, ����] are computed from a 
polynomial . ∈ ���[?, ����, … , ����] with a special HFEv form:  

 .�?, ����, … , ����� ≔ ∑ !�,�?����
	 ��������

������

+ ∑ �������, … , �����?��
	 ������

����

+ ������, … , ����� 

where !�,�  ∈  ���, the maps �� ∶  ��
� →  ��� are linear and the map �: ��

� →  ��� is quadratic. The variables 
����, … , ���� are called vinegar variables and for each specialization of them, the polynomial . becomes a univariate 
polynomial with the following shape: 

 .)�?� ≔ ∑ !�,�?����
	 ������� �

������

+ ∑ ��?��
	 ������

����

+ A ∈  ����?
, 

where !�,�,�� ,A ∈  ���. The roots of .)�?� can be found in quasi-linear time in �4 [i.30].  

A central task in the signature process is to find a solution to the system: 

 
 ,����, … , ����� = �′�

⋮
,� (��, … , ����) = �′�

. 

This involves randomly sampling ()′���, … , )′���) ∈ ��
�, setting .)�?� ≔ .(?, )′���, … , )′���) and computing the 

roots of .)�?�. The process is repeated until .)�?� has at least one root. The function Inv(,� − �′�, …, ,�−�′�) 
corresponds to this process. It returns ()′�, … , )′���) ∈ ��

��� such that  ,�()��, … , )����) = �′�, … , ,� ()′�, … , )′���) =
�′�.  

7.1.4 GeMSS.KeyGen 

Input: Security level 

Output: Public key pk ≔ (#�, …, #�) ∈ �����, … , ����
 � 
Private key sk ∈ GL ���!× ���!��� � × GL�×���� � × ���[?, ����, … , ����] 

1) Use PRF to sample a pair of invertible matrices (=,>)  ∈ GL ���!× ���!��� � × GL�×�����. 
2) Use PRF to sample a HFEv polynomial (see clause 7.1) . ∈ ���[?, ����, … , ����]. 
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3) Generate the secret inner polynomials ,�, … , ,� ∈ ��[��, …, ����] from .. 

4) Compute the public-key polynomials �#�, … , #� , . . , #�� =  (,�((��, …, ����)=), … , ,�((��, …, ����)=))> ∈
�����, … , ����
 �. 

The public key is pk ≔ (#�, …, #�) ∈ �����, … , ����
 �. The private key is sk ≔((=��,>��),.)  ∈
 GL ���!× ���!��� � × GL"×���� � ×  ���[?, ����, … , ����]. 

NOTE:  The GeMSS submission describes how to compress the private key by deriving everything from a seed. 

7.1.5 GeMSS.Sign 

Input: Private key sk = ((=��,>��),.)  ∈  GL ���!× ���!��� � × GL�×���� � ×  ���[?, ����, … , ����] 
Message � ∈  {0, 1}∗.  

Output:  Signature sig ∈ ��

��#(�����). 

1) Set =	 = (0, … ,0)  ∈ ��
�. 

2) For B from 1 to �: 

2.1) Compute � ≔ ℋ��� ∥ B� + =���, ∈  ��
�, where ℋ�  is the Bth composition of ℋ. 

2.2) Use a PRF to sample ����, … ,�� ∈ ��
���. 

2.3) Computer �’ ≔ (�>��,  ����, … ,��) ∈ ��
�. 

2.4) Set ()′� , … , )′���) ≔ Inv(,� − �′� , …, ,�−�′�) ∈ ��
���. 

2.5) Compute ()�, … , )���) ≔ ()′�, … , )′���) =��  ∈ ��
���. 

2.6) Set =� ≔ ()�, … , )�) ∈ ��
� and ?� ≔ ()$��, … , )���) ∈ ��

�����. 

The signature is sig ≔ (=� ,?�, … ,?�) ∈ ��

��#(�����). 

7.1.6 GeMSS.Verify 

Input: Public key pk ≔  C = (#�, …, #�) ∈ �����, … , ��
 � 
Message � ∈  {0, 1}∗ 

Signature sig ≔  (=� ,?�, … ,?�) ∈ ��

��#(�����)  

Output: !��"#$ or �"%"�$. 
1) For B from � to 1:  

1.1) Compute =��� ≔ p(=� ,?�)+ ℋ�(� ∥ B). 
2) If =	 = (0, … ,0) then !��"#$ else �"%"�$. 

7.1.7 Parameters and performance 

Table 19 lists the families of proposed parameter sets added in the round 3 GeMSS submission [i.27]. See annex D for 
families of parameter sets from earlier versions of the submission. 
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Table 19: Proposed parameters for round 3 GeMSS 

Parameter set 
 � � � � Claimed security 
WhiteGeMSS-128 513 3 175 163 12 Category 1 
CyanGeMSS-128 129 3 177 163 14 Category 1 

MagentaGeMSS-128 17 3 178 163 15 Category 1 
WhiteGeMSS-192 513 3 268 247 21 Category 3 
CyanGeMSS-192 129 3 270 247 23 Category 3 

MagentaGeMSS-192 17 3 271 247 24 Category 3 
WhiteGeMSS-256 513 3 364 333 29 Category 5 
CyanGeMSS-256 129 3 364 333 32 Category 3 

MagentaGeMSS-256 17 3 366 333 33 Category 5 
 

These parameter sets lead to the private key, public key and signature sizes listed in Table 20. 

Table 20: GeMSS private key, public key and signature sizes 

Parameter set Private key Public key Signature 
WhiteGeMSS-128 

16 bytes 
358 170 bytes 235 bits 

CyanGeMSS-128 369 720 bytes 244 bits 
MagentaGeMSS-128 381 460 bytes 253 bits 

WhiteGeMSS-192 
24 bytes 

1 293 847 bytes 373 bits 
CyanGeMSS-192 1 320 801 bytes 383 bits 

MagentaGeMSS-192 1 348 033 bytes 391 bits 
WhiteGeMSS-256 

32 bytes 
3 222 690 bytes 513 bits 

CyanGeMSS-256 3 272 016 bytes 522 bits 
MagentaGeMSS-256 3 321 716 bytes 531 bits 

 

The submission package [i.27] includes a reference implementation, optimized implementation and additional 
implementation. MQsoft [i.31] is an efficient library in C for HFE-based schemes such as GeMSS by improving the 
complexity of several fundamental building blocks for such schemes. It uses SSSE2, SSSE3 and the AVX2 instructions 
sets. Table 21 gives the performance figures [i.27], obtained with MQsoft on a 3,40 GHz Intel® Core™ i7-6600U 
processor. 

Table 21: GeMSS AVX2 performance figures 

Parameter set KeyGen Sign Verify 
WhiteGeMSS-128 20 000 000 cycles 436 000 000 cycles 91 700 cycles 
CyanGeMSS-128 18 500 000 cycles 49 800 000 cycles 91 000 cycles 
MagentaGeMSS-128 16 700 000 cycles 1 820 000 cycles 101 000 cycles 
WhiteGeMSS-192 73 100 000 cycles 1 330 000 000 cycles 263 000 cycles 
CyanGeMSS-192 68 200 000 cycles 131 000 000 cycles 269 000 cycles 
MagentaGeMSS-192 60 300 000 cycles 4 530 000 cycles 274 000 cycles 
WhiteGeMSS-256 163 000 000 cycles 1 920 000 000 cycles 516 000 cycles 
CyanGeMSS-256 159 000 000 cycles 190 000 000 cycles 535 000 cycles 
MagentaGeMSS-256 148 000 000 cycles 7 610 000 cycles 535 000 cycles 
 

Additional parameters and performance figures are given in annex D. 

NOTE:  Due to the analysis in [i.40], the Round 3 parameters presented in Table 19 might need to be updated (see 
clause C.2). 
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7.2 Picnic 

7.2.1 Introduction 

The Picnic signature scheme [i.32] is constructed from a Zero-Knowledge Identification Scheme (ZK-IDS) following 
the Fiat-Shamir framework (see clause B.3). Its security is based on the hardness of key-recovery against a block-
cipher. The basic idea of Picnic is to use a generic ZK proof system for constructing a digital signature scheme. The 
first version Picnic used ZKB++, a variant of ZKBoo [i.33]. A new variant of ZKBoo was then introduced by Katz, 
Kolesnikov and Wang [i.34] which reduced the size of the signature.  

The public key in Picnic is given by a pair (C,D = E%#(C)) ∈ ��
� × ��

�, where E is the LowMC [i.35] block-cipher. The 
private key sk ∈ ��

� of Picnic corresponds to the secret key of the block-cipher E. [i.32] derives a ZK-IDS of the 
private key knowledge.  

7.2.2 Public parameters 

The Picnic scheme is parameterized by: 

• �, the security parameter; 

• �, the LowMC key and blocksize in bits; 

• <, the number of LowMC S-boxes; 

• 6, the number of LowMC rounds; 

• ℓ
  , the length of the hash function output in bits; 

• =, the length of seeds for generating the shares and blinding values for notional MPC participants; and 

• F, the number of repetitions of the zero-knowledge proof. 

7.2.3 Auxiliary primitives 

Picnic makes use of several auxiliary, symmetric primitives: 

• ℋ, a cryptographic hash function; 

• XOF, an extendable output function; and 

• E, a block cipher with �-bit keys and an �-bit blocksize. 

The instantiations of these primitives from the specification are described in Table 22. 

Table 22: Auxiliary symmetric primitive for Picnic 

Primitive Category 1 Category 3 Category 5 
ℋ SHAKE-128 SHAKE-256 SHAKE-256 

XOF SHAKE-128 SHAKE-256 SHAKE-256 
� The LowMC [i.35] block cipher. 

 

E is implemented in a manner that supports blinded, secure, multi-party computation such as the Yao garbled circuit 
construction [i.32]. In Picnic, a 3-party implementation is used with inputs and outputs t to smaller functions divided 
into shares t = t0 + t1 + t2. Some share values are passed between the parties blinded with random XORs.  
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7.2.4 Picnic.KeyGen 

Input: Security level 

Output: Public key pk ∈ ��
� × ��

� 
Private key sk ∈ ��

� 

1) Randomly sample a plaintext C ∈ ��
� and a private key sk ∈ ��

�. 

2) Set the public key as pk ≔ �C,D = E%#(C)� ∈ ��
� × ��

�.  

7.2.5 Picnic.Sign 

Input:  Public key pk ≔ �C,D = E%#(C)� ∈ ��
� × ��

� 
Private key sk ∈ ��

� 
Message M ∈  {0, 1}∗. 

Output:  Signature sig ∈ ��
�& × ��

��� × (��

ℓ� × ��
�'���(��)&  

1) Generate a 256-bit ���� and a list of 3� seeds of length � for the XOF. Use the seeds to generate 3� random 
streams ���	[
][�]  ≔  XOF(���

	�
����� || ���� || � || 
 || ������_�
���ℎ). 

2) For � from 0 to � − 1: 

2.1) Generate three shares of sk by setting �[0] to be the first � bits of rand[0][�], �[1] to be the first � bits 
of ���	[0][�] and �[2] ≔  sk + �[0] + �[1]. 

2.2) Execute the 3-party computation �(��������������)(�) for all three parties drawing blinding values for the 
parties from ���	[0][�], ���	[1][�] and ���	[2][t] respectively. Keep a transcript of all 
communications that each party would receive. 

2.3) Keep a copy of the final output shares of the computation. 

2.4) Form a commitment ������� ≔ ℋ(ℋ(�

	[�]), �����_�ℎ��
��� || ����������[�] || ������_�ℎ��
[�]) 
for each party's view of the computation. 

3) Form a list 
 ∈ ��	 of � challenges by applying the XOF the full collection of output shares concatenated with 
the full collection of commitments, the ����, pk and �. Two-bit outputs 00, 01, 10, and 11 are treated as 0, 1, 
2 and generate another output. 

4) For � from 0 �� � − 1: 

4.1) Set the responses �[�] ≔ �[�][�� + 2� mod 3] and �[�] to be the collection of transcript, seeds and 
shares required to verify the computation of parties � and (� + 1) mod 2. 

5) Set sig ≔ (
, ����, ((��0�, ��0�), … , (��� − 1�, ��� − 1�)).  

7.2.6 Picnic.Verify 

Input:  Public key pk ≔ � ,! = �
�� �" ∈ ��
� × ��

� 
Message M ∈  {0, 1}∗ 
Signature sig ∈ ���	 × ��

�
� × (��
ℓ� × ��

��������)	 . 

Output: #��
�� or $


��. 

1) Parse sig into (
, ����, (��0�, ��0�, … , ��� − 1�, ��� − 1�)). If deserialization fails output Reject. 

2) For � from 0 to � − 1: 

2.1) Use �[�] to initialize sk-shares and random streams of two parties. 
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2.2) Execute the 3-party computation �(��������������)(�) for the two parties that can be reconstructed using 
their input shares and random streams to create blinding values. Keep a transcript of all communications 
that each of the two parties would receive. 

2.3) For the parties � = 
� and � = �
� + 1� mod 3 compute: 

ℋ�ℋ��

	����, �����_�ℎ��
��� || ������������� || ������_�ℎ��
����. 

 Use these together with �[�] to reconstruct putative commitments �[�] per step 2.4 of the signing 
process. 

2.4) Compute the third output share � +  ������_�ℎ��
[
�]  +  ������_�ℎ��
[�
� + 1� mod 3]. 

3) Reconstruct the putative set of challenges 
’ per step 3 of the signing process. 

4) If 
’ = 
 then return #��
�� else return $


��. 

NOTE 1: Picnic-FR refers to the Fiat-Shamir variant of Picnic, Picnic-full is the same as the Fiat-Shamir variant but 
with different LowMC parameters. Finally, Picnic-UR is the variant using Unruh transformation.  

NOTE 2: Picnic.Sign and Picnic.Verify describe signing and verification as performed in Picnic-{L1,L3,L5}-
{FS,full} and partly as done by the UR variant.   

7.2.7 Parameters and performance  

The Picnic submission [i.32] proposes twelve sets of parameters (see Table 23). 

Table 23: Proposed parameters for Picnic 

Parameter set � � � � �� � � Claimed security 
Picnic-L1-FS/UR 128 10 128 20 256 128 219 Category 1 

Picnic-L1-full 128 43 129 4 256 128 219 Category 1 
Picnic3-L1 128 43 129 4 256 128 250 Category 1 

Picnic-L3-FS/UR 192 10 192 30 384 192 329 Category 3 
Picnic-L3-full 192 64 192 4 384 192 329 Category 3 
Picnic3-L3 192 64 192 4 384 192 419 Category 3 

Picnic-L5-FS/UR 256 10 256 38 512 256 438 Category 5 
Picnic-L5-full 255 85 255 4 512 256 438 Category 5 
Picnic3-L5 255 85 255 4 512 256 601 Category 5 

 

These parameter sets lead to the private key, public key and signature sizes listed in Table 24. 

Table 24: Picnic private key, public key and signature sizes 

Parameter set Private key Public key  Signature 
Picnic-L1-FS 16 bytes 32 bytes 34 032 bytes 
Picnic-L1-UR 16 bytes 32 bytes 53 961 bytes 
Picnic-L1-full 17 bytes 34 bytes 32 061 bytes 

Picnic3-L1-FS 17 bytes 34 bytes 13 802 bytes 
Picnic-L3-FS 24 bytes 48 bytes 76 772 bytes 
Picnic-L3-UR 24 bytes 48 bytes 121 845 bytes 
Picnic-L3-full 24 bytes 48 bytes 71 179 bytes 

Picnic3-L3-FS 24 bytes 48 bytes 35 024 bytes 
Picnic-L5-FS 32 bytes 64 bytes 132 856 bytes 
Picnic-L5-UR 32 bytes 64 bytes 209 506 bytes 
Picnic-L5-full 32 bytes 64 bytes 126 286 bytes 

Picnic3-L5-FS 32 bytes 64 bytes 61 024 bytes 
 

The Picnic submission package includes a reference implementation and an optimized implementation that uses AVX2 
instruction sets. Table 25 gives performance figures [i.32] for the optimized implementation on a 3,60 GHz Intel® 
Core™ i7-4790 processor. 
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Table 25: Picnic AVX2 performance figures 

Parameter set KeyGen  Sign Verify 
Picnic-L1-FS 5 599 cycles 4 924 342 cycles 3 982 244 cycles 
Picnic-L1-UR 6 418 cycles 6 502 156 cycles 5 305 718 cycles 
Picnic-L1-full 3 680 cycles 3 601 664 cycles 2 871 980 cycles 

Picnic3-L1-FS 4 151 cycles 18 252 055 cycles 13 811 201 cycles 
Picnic-L3-FS 10 479 cycles 11 509 382 cycles 9 452 289 cycles 
Picnic-L3-UR 10 964 cycles 14 875 862 cycles 12 764 570 cycles 
Picnic-L3-full 6 567 cycles 7 008 817 cycles 5 626 166 cycles 

Picnic3-L3-FS 6 567 cycles 37 595 772 cycles 29 243 365 cycles 
Picnic-L5-FS 15 255 cycles 20 085 119 cycles 16 722 292 cycles 
Picnic-L5-UR 17 118 cycles 25 178 763 cycles 20 998 784 cycles 
Picnic-L5-full 6 701 cycles 11 351 041 cycles 9 217 982 cycles 

Picnic3-L5-FS 9 504 cycles 65 555 710 cycles 46 887 830 cycles 
 

7.3 SPHINCS+ 

7.3.1 Introduction 

SPHINCS+ [i.37] is a stateless hash-based signature scheme constructed using a tweakable hash function. The security 
of the scheme depends on properties of the tweakable hash function such as distinct-function multi-target second-
preimage resistance. 

SPHINCS+ uses several different components: 

• The Winternitz One-Time Signature (WOTS) scheme; 

• The Merkle signature scheme and its hierarchical version; and 

• The Forest Of Random Subsets (FORS) few-time signature scheme. 

There are two different instantiations of SPHINCS+: a simple variant which has a non-tight security proof in the ROM 
and a robust variant which has a tight security proof with fewer random oracle assumptions.  

7.3.2 Public parameters 

The main parameters for SPHINCS+ are: 

• �, the length of the tweakable hash function output; 

• %, the length of the hash chains in the WOTS one-time signature; 

• ℓ, the number of hash chains in the WOTS one-time signature; 

• &, the number of trees in the FORS few-time signature; 

• �, the height of the trees in the FORS few-time signature; 

• ℎ, the total height of the tree in the hierarchical Merkle signature; and 

• 	, the number of layers in the hierarchical Merkle signature. 

7.3.3 Auxiliary functions 

7.3.3.1 Symmetric primitives 

SPHINCS+ makes use of several auxiliary symmetric primitives: 

• �, an �-bit tweakable hash function; 
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• ����, an '-bit cryptographic hash function where ' ≔ &� + ℎ; and 

• PRF, a pseudorandom function. 

These primitives are instantiated in the specification using either SHA-256, SHAKE-256 or Haraka. 

NOTE: Every call to the tweakable hash function includes a public seed and unique hash address to prevent 
multi-target attacks.  

7.3.3.2 One-time signature scheme 

The WOTS one-time signature scheme is as follows: 

• KeyGen: The one-time private key is a length-ℓ sequence of �-bit values. The private values are used as the 
starting values for ℓ hash chains of length %. The one-time public key is the �-bit hash of the values at the 
ends of the ℓ chains. 

• Sign: The �-bit message and its checksum are used to select positions in each of the ℓ hash chains. The one-
time signature is the sequence of �-bit intermediate chain values at these positions. 

• Verify: The sequence of intermediate values from the signature are used to complete the hash chains. The 
signature is valid if the hash of the values recovered at the ends of the chains matches the public key. 

NOTE: The WOTS one-time private keys are all derived from a single �-bit seed using PRF. 

7.3.3.3 Merkle signature scheme 

The Merkle signature scheme is as follows: 

• KeyGen: The Merkle private key is a sequence of 2�
�

 one-time private keys. The one-time public keys form 
the leaf nodes of a binary hash tree. The Merkle public key is the �-bit value at the root node of the tree. 

• Sign: The �-bit message with message index � is signed by the �th one-time private key. The Merkle signature 
is the one-time signature together with an authentication path consisting of intermediate nodes from the tree. 

• Verify: The one-time signature and authentication path are used to recover the root node of the tree. The 
signature is valid if the recovered value matches the public key. 

NOTE: SPHINCS+ uses a hierarchical Merkle signature scheme with 	 layers of trees of height ℎ� ≔ ℎ/	. The 
root node of a tree in layer � is signed by a one-time signature from a tree in layer � + 1. The hierarchical 
signature is the sequence of 	 Merkle signatures. The hierarchical public key is the root node of the tree 
in layer 	.  

7.3.3.4 Few-time signature scheme 

The FORS few-time signature is as follows: 

• KeyGen: The few-time private key is & length-2�  sequences of �-bit values. The private values are hashed to 
form the leaf nodes of & binary hash trees of height �. The few-time public key is the sequence of �-bit values 
at the root nodes of the trees.  

• Sign: The �&-bit message digest is used to select positions in each of the & sequences. The few-time signature 
is the sequence of & private values at these positions together with the corresponding authentication paths. 

• Verify: The private values and authentication paths in the few-time signature are used to recover the root 
nodes of the trees. The signature is valid is the recovered values match the public key. 

NOTE: The FORS few-time private keys are all derived from a single �-bit seed using PRF. 
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7.3.4 SPHINCS+.KeyGen 

Input: None 

Output: Public key pk ∈ (0, 1)� × (0, 1)� 
Private key sk ∈ (0, 1)� × (0, 1)� × (0, 1)� × (0, 1)�. 

1) Sample two uniformly random �-bit private seeds ��, �� ∈ (0,1)�. 

2) Sample a uniformly random �-bit public seed �� ∈ (0,1)�. 

3) Compute the Merkle public key �� for the single tree at level 	 derived from the private seed �� and public 
seed ��. 

The public key is pk ≔ (��, ��). The private key is sk ≔ (��, ��, ��, ��).  

7.3.5 SPHINCS+.Sign 

Input: Private key sk ∈ (0, 1)� × (0, 1)� × (0, 1)� × (0, 1)� 
Message � ∈  {0, 1}∗ 

Output: Signature sig ∈ (0, 1)� ∈ (0, 1)������� × (0, 1)(���ℓ)� 

1) Parse the private key as sk ≔ (��, ��, ��, ��). 

2) Compute an �-bit randomizer $ from the private seed �� and the message � using PRF. 

3) Compute the message digest and index �'	, �	��  ≔ ���� ($ ∥  ��  ∥  ��  ∥  �). 

4) Compute the few-time signature sig� of the message digest '	 using the few-time private key at index �	� 
derived from the private seed �� and public seed ��. 

5) Compute the few-time public key �&� at index �	� derived from the private seed �� and public seed ��. 

6) For � from 1 to 	: 

6.1) Compute the Merkle signature sig� of the public key �&� � using the one-time private key at index �	� 
on level � derived from the private seed �� and public seed ��. 

6.2) Compute the Merkle public key �&� for the tree at index Floor(�	�/2�/�) on level � derived from the 
private seed �� and public seed ��.  

6.3) Set �	� ≔ Floor(�	�/2�/�).  

The signature is sig ≔ ($, sig�, sig�, … , sig!). 

NOTE: The SPHINCS+ specification allows the option of including additional input to the PRF when computing 
the randomizer in step 2. 

7.3.6 SPHINCS+.Verify 

Input: Public key pk ∈ (0, 1)� × (0, 1)� 
Message � ∈  {0, 1}∗ 
Signature sig ∈  (0, 1)� × (0, 1)������� × (0, 1)(���ℓ)� 

Output: #��
�� or $


��. 

1) Parse the public key as pk ≔ (��, ��). 

2) Parse the signature as sig ≔ ($, sig�, sig�, … , sig!).  

3) Compute the message digest and index �'	, �	�� ≔ ℋ��� ($ ∥  ��  ∥  ��  ∥  �). 
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4) Recover the few-time public key �&��  at index �	� from the few-time signature sig� for '	 using the public 
seed ��. 

5) For � from 1 to 	: 

5.1) Recover the Merkle public key �&�
� for the tree at index Floor(�	�/2�/�) on level � from the Merkle 

signature sig� for �&� �
�  using the public seed ��. 

5.2) Set �	� ≔ Floor(�	�/2�/�). 

6) If �&�
� = �� then return #��
�� else return $


��. 

7.3.7 Parameters and performance 

The SPHINCS+ submission [i.37] describes six main parameter sets (see Table 26). Each of these can then be 
instantiated with a choice of three different hash functions (SHA-256, SHAKE-256 or Haraka [i.38]) and two different 
tweakable hash function constructions (simple or robust) giving a total of 36 parameter sets.  

Table 26: Proposed parameters for SPHINCS+ 

Parameter set � � � � 	 
 � Claimed security 
128s-L1 

128 

16 

35 
14 12 63 7 Category 1 

128f-L1 33 6 66 22 Category 1 
192s-L3 

192 51 
17 14 63 7 Category 3 

192f-L3 33 8 66 22 Category 3 
256s-L5 

256 67 
22 14 64 8 Category 5 

256f-L5 35 9 68 17 Category 5 
 

These parameters lead to the private key, public key and signature sizes listed in Table 27. 

Table 27: SPHINCS+ private key, public key and signature sizes 

Parameter set Private key Public key Signature 
128s-L1 

64 bytes 32 bytes 
7 856 bytes 

128f-L1 17 088 bytes 
192s-L3 

96 bytes 48 bytes 
16 224 bytes 

192f-L3 35 664 bytes 
256s-L5 

128 bytes 64 bytes 
29 792 bytes 

256f-L5 49 216 bytes 
 

Tables 28 and 29 present the performance results for the SHAKE and SHA2 parameter sets. Additional parameters and 
performance are given for the Haraka hash function in annex E. All cycle counts were obtained from the AVX2 
optimized implementation on an Intel® Xeon™ E3-1275 V3 processor with TurboBoost and Hyperthreading disabled.  

Table 28: SPHINCS+ AVX2 performance figures (SHAKE) 

Parameter set KeyGen Sign Verify 
SHAKE256-128s-simple-L1 144 000 000 cycles 1 100 000 000 cycles 1 190 000 cycles 
SHAKE256-128s-robust-L1 274 000 000 cycles 2 080 000 000 cycles 2 410 000 cycles 
SHAKE256-128f-simple-L1 2 250 000 cycles 56 900 000 cycles 3 350 000 cycles 
SHAKE256-128f-robust-L1 4 270 000 cycles 106 000 000 cycles 6 680 000 cycles 
SHAKE256-192s-simple-L3 206 000 000 cycles 1 910 000 000 cycles 1 650 000 cycles  
SHAKE256-192s-robust-L3 398 000 000 cycles 3 550 000 000 cycles 3 300 000 cycles 
SHAKE256-192f-simple-L3 3 220 000 cycles 89 900 000 cycles 4 780 000 cycles 
SHAKE256-192f-robust-L3 6 180 000 cycles 167 000 000 cycles 9 330 000 cycles 
SHAKE256-256s-simple-L5 136 000 000 cycles 1 650 000 000 cycles 2 560 000 cycles 
SHAKE256-256s-robust-L5 258 000 000 cycles 2 980 000 000 cycles 4 670 000 cycles 
SHAKE256-256f-simple-L5 8 540 000 cycles 177 000 000 cycles 5 030 000 cycles 
SHAKE256-256f-robust-L5 16 300 000 cycles 330 000 000 cycles 9 720 000 cycles  
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Table 29: SPHINCS+ AVX2 performance figures (SHA2) 

Parameter set KeyGen Sign Verify 
SHA-256-128s-simple-L1 85 000 000 cycles 645 000 000 cycles 861 000 cycles 
SHA-256-128s-robust-L1 176 000 000 cycles 1 330 000 000 cycles 1 830 000 cycles 
SHA-256-128f-simple-L1 1 330 000 cycles 33 700 000 cycles 2 150 000 cycles 
SHA-256-128f-robust-L1 2 750 000 cycles 68 500 000 cycles 4 800 000 cycles 
SHA-256-192s-simple-L3 125 000 000 cycles 1 250 000 000 cycles 1 440 000 cycles 
SHA-256-192s-robust-L3 261 000 000 cycles 2 520 000 000 cycles 3 100 000 cycles 
SHA-256-192f-simple-L3 1 930 000 cycles 55 300 000 cycles 3 490 000 cycles 
SHA-256-192f-robust-L3 4 060 000 cycles 113 000 000 cycles 7 550 000 cycles 
SHA-256-256s-simple-L5 80 900 000 cycles 1 030 000 000 cycles 1 990 000 cycles 
SHA-256-256s-robust-L5 339 000 000 cycles 3 910 000 000 cycles 8 290 000 cycles 
SHA-256-256f-simple-L5 5 070 000 cycles 109 000 000 cycles 3 560 000 cycles 
SHA-256-256f-robust-L5 21 300 000 cycles 436 000 000 cycles 14 900 000 cycles 
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Annex A: 
Security properties 
Digital signatures are typically intended to provide authentication, integrity and non-repudiation of data. Assurance of 
achieving these goals is provided by demonstrating the resilience of a signature scheme under an attack model. Besides 
EUF-CMA, there are various attack models for digital signature schemes. These attacks are classified according to the 
resources available to the attacker and the capability that is targeted by an attacker. 

Examples of attacker resources include (in order of increasing resources): 

• Key Only Attack (KOA). The attacker is provided with the public verification key. 

• Known Message Attack (KMA). The attacker can request valid signatures for a large number of messages, 
but is not able to choose the messages that are signed. 

• (Adaptive) Chosen Message Attack (CMA). The attacker can request valid signatures of messages that are 
chosen by the attacker. This includes requesting valid signatures of messages chosen based on previous 
responses as well as requesting multiple signatures of the same message. 

Examples of targeted capabilities include (in order of difficulty of obtaining the capability): 

• Key recovery. The attacker can obtain the private signing key or an equivalent. 

• Universal Unforgeability (UUF). Attacker's goal is to create valid signatures for any messages that were not 
included in a signature request. 

• Existential Unforgeability (EUF). Attacker's goal is to create a valid signature for some message that was not 
included in a signature request.  

• Strong existential Unforgeability (SUF). Attacker's goal is to create a valid signature for some message 
where this signature is not the same as any signatures returned by signature requests for that message. 

The SUF condition allows the attacker to exhibit alternative signatures for a given message, which could be possible 
using signature malleability. Attack models are usually specified in abbreviated form giving the targeted capability and 
the resources in that order, e.g. the UUF-KMA attack model seeks to defend against an attacker able to perform known 
message attacks with the goal of creating selected (universal) forgeries. 
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Annex B: 
Frameworks for constructing digital signatures 

B.1 Hash-and-sign 
A hash-and-sign signature scheme takes the following general format: the message is hashed to a target challenge and 
the signature is a solution to this challenge that the signer can compute using some trapdoor. The verifier hashes the 
message and checks that the signature is indeed a solution to the challenge. 

GeMSS and Rainbow fall in this category and both follow the same multivariate signature design principle introduced 
by Matsumoto-Imai [i.28]. In both cases, the public key is given by a set of ' multivariate quadratic polynomials ��, …, 
�� ∈ �"[��, …, ��]. This public key is derived (via a secret affine change of variables) from a secret set of polynomials 
*�, …, *� ∈ �"[��, …, ��] that have a specific structure. Namely, for all (+�, … , +�) ∈ �"�, it is possible to find a solution 
(��, … , ��) ∈ �"

� to the system: 

 
*����, … , ��� = +�

⋮

*����, … , ��� = +�
 

in polynomial time. 

A signature is essentially generated by inverting the polynomials *�, …, *� ∈ �"[��, … , ��] while the verification 
process requires evaluating the public polynomials. The main difference between GeMSS and Rainbow is the method 
for constructing the secret inner polynomials *�, …, *� ∈ �"[��, …, ��]. This choice can lead to different trade-offs 
between the size of the signature, the size of the public key and the efficiency of the schemes.  

FALCON [i.20] uses the Gentry-Peikert-Vaikuntanathan (GPV) framework [i.21] for constructing hash-and-sign 
lattice-based signature schemes. This approach can be sketched as follows:  

• The public key includes a full-rank matrix , ∈ ℤ"
�×� (' ≥ �) generating a --ary lattice. 

• The corresponding private key is a matrix . ∈ ℤ"
�×� generating the lattice orthogonal to the public lattice 

modulo -, i.e. such that .,# = /. 

• The signature of a message � ∈  {0, 1}∗ is a vector s ∈ ℤ"
� that is short (in the sense of having a small 

Euclidian norm) and such that � ,# = ℋ(�||�), where ℋ is a hash function and � ∈  {0, 1}∗ is random string 
(or salt). 

The signer first computes an arbitrary �� ∈ ℤ"
� such that �� ,# =  ℋ(�||�). This requires solving a linear system. The 

�� that will be found is not short enough in general. The matrix . is then used to generate a vector 0 ∈ ℤ"
� in the lattice 

orthogonal to the public lattice and which is close to ��. Thus, � = �� − 0 ∈ ℤ"
� is short and verifies �,# = ��,# −

0 ,# =  ℋ(�||�), i.e., � is a valid signature. The process of computing 0 ∈ ℤ"
� is called "trapdoor sampling" and an 

appropriate trapdoor sampler is used to ensure that the signature s ∈ ℤ"
� does not leak information about the short 

matrix .. 

B.2 Hash-based 
Hash-based signatures [i.17] originate from the works by Lamport [i.14] and Merkle [i.15] in the late 1970s. The basic 
approach is to start from a One-Time Signature scheme (OTS) and build a binary hash tree, called Merkle tree, of height 
ℎ on top of the hashes of 2� OTS public keys. The hash at the root of the tree is the public key of the scheme.  

Hash-based signatures are divided into two categories: stateful and stateless [i.17]. The number of messages that can be 
signed by a keypair in stateful hash-based signatures is strictly limited by the number of one-time signatures available. 
Due to this limit and the corresponding state management issues, stateful hash-based signatures were not considered by 
the NIST PQC standardization process.  
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The main advantage of hash-based signatures compared to other quantum-resistant signatures is the minimal security 
assumptions. These are typically variants of well-understood properties of hash functions such as pseudorandomness or 
second-preimage resistance.  

B.3 Fiat-Shamir 
The general idea of Fiat-Shamir signature schemes is to transform an Identification Scheme (IDS) into a signature via a 
generic transformation. An IDS is described as a set of interactions between a prover and a verifier. The verifier 
challenges the prover with several questions. By correctly answering the questions, the prover demonstrates to the 
verifier that they have knowledge of a particular secret. 

Classically, an IDS can be turned into a signature scheme via the Fiat-Shamir technique [i.16], i.e. the signature is 
derived from the interactions between a prover and a simulated verifier. In general, the Fiat-Shamir paradigm produces 
signature schemes that are provably secure in the ROM. The Unruh transform [i.36] transforms a ZK-IDS into a digital 
signature scheme that is secure in the QROM.  

The security of IDS-based signatures can be reduced in the ROM to the security of commitment schemes and random 
instances of a computational hard problem: finding a short vector in structured lattices for Dilithium or recovering the 
secret key of a block-cipher for Picnic. 
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Annex C: 
Recent cryptanalysis results 

C.1 Introduction 
The present annex discusses recent attacks against round 3 candidates. This is not intended to be exhaustive but rather 
to mention the most impactful results that appeared during the writing of the present document.   

C.2 Improved MinRank attacks against GeMSS and 
Rainbow 

The security of GeMSS and Rainbow relies on the computational hardness of the PoSSo problem [i.17] and the 
MinRank problem [i.41]. Given a set of input matrices and a target rank �, the MinRank problem asks an attacker to 
find a linear combination of the input matrices that has rank at most �.  

In [i.39], the author described an improved MinRank attack against Rainbow. The attack applies to the round 3 
parameter sets of Rainbow (see Table 13) and reduces the security level of Rainbow I, III and V by 20 bits, 40 bits and 
55 bits respectively (leading to 127, 177 and 226 bits of security, respectively). These are below the NIST security 
targets for the categories claimed in the submission (see clause 5.3). In a rebuttal [i.44], the Rainbow team confirmed 
that the attack was correct [i.39] but claimed that the Rainbow parameter sets from the submission were still sufficiently 
secure if the memory requirements were included in the cost of the attack. At this stage, the Rainbow submission [i.24] 
has not been updated to take this new attack into account.  

In [i.40], the authors describe an improved MinRank attack against GeMSS. The attack significantly reduces the 
security of the parameters sets of GeMMS (see Table 19) below the NIST targets for the categories claimed in the 
submission (see clause 5.3). In [i.42], the authors suggest a tweak of GeMMS that mitigates the new attack. At this 
stage, the GeMSS submission [i.27] has not been updated to take these new results into account.  

C.3 Algebraic attack against Picnic 
In [i.43], the author describes an attack against Picnic using a new algorithm for solving PoSSo to recover the LowMC 
secret key. The algorithm [i.43] is faster than exhaustive search and reduces the claimed security of several Picnic 
parameters (see Table 23). However, the memory required by [i.43] is significant and so the impact of the attack is not 
clear. At this stage, the Picnic submission [i.32] has not been modified to take this new attack into account. The attack 
only affects LowMC instances with full Sbox layer and hence only applies to the Picnic3 and Picnic-L{ 1,3,5}-full 
instances. 
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Annex D: 
Additional parameters for GeMSS 

Table D.1: GeMSS private key, public key and signature sizes for additional parameters 

Parameter set Private key Public key Signature 
GeMSS128 

16 bytes 
352 190 bytes  258 bits  

BlueGeMSS128 363 610 bytes 270 bits  
RedGeMSS128 375 210 bytes 282 bits  
GeMSS192 

24 bytes 
1 237 960 bytes 411 bits 

BlueGeMSS192 1 264 120 bytes 423 bits 
RedGeMSS192 1 290 540 bytes 435 bits 
GeMSS256 

32 bytes 
3 040 700 bytes 576 bits 

BlueGeMSS256 3 087 960 bytes 588 bits 
RedGeMSS256 3 135 590 bytes  600 bits 

 

Table D.2: GeMSS AVX2 performance figures for additional parameters 

Parameter set KeyGen Sign Verify 
GeMSS128 19 600 000 cycles 608 000 000 cycles 106 000 cycles 
BlueGeMSS128 18 400 000 cycles  67 200 000 cycles 134 000 cycles 
RedGeMSS128 16 300 000 cycles 2 050 000 cycles 141 000 cycles 
GeMSS192 69 400 000 cycles 1 800 000 000 cycles 304 000 cycles 
BlueGeMSS192 65 000 000 cycles 252 000 000 cycles 325 000 cycles 
RedGeMSS192 57 100 000 cycles 5 970 000 cycles 335 000 cycles 
GeMSS256 158 000 000 cycles 2 490 000 000 cycles 665 000 cycles 
BlueGeMSS256 152 000 000 cycles 248 000 000 cycles 680 000 cycles 
RedGeMSS256 143 000 000 cycles 8 760 000 cycles 709 000 cycles 
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Annex E: 
Haraka parameters for SPHINCS+ 

Table E.1: SPHINCS+ AVX2 performance figures (Haraka) 

Parameter set KeyGen Sign Verify 
Haraka-128s-simple-L1 30 075 604 cycles  240 763 926 cycles 308 774 cycles 
Haraka-128s-robust-L1 37 113 806 cycles 304 905 780 cycles 432 066 cycles 
Haraka-128f-simple-L1 482 332 cycles 12 196 792 cycles 799 808 cycles 
Haraka-128f-robust-L1 587 548 cycles 15 176 760 cycles 1 072 774 cycles 
Haraka-192s-simple-L3 46 369 950 cycles 481 682 614 cycles 480 264 cycles 
Haraka-192s-robust-L3 63 387 838 cycles 718 896 354 cycles 759 952 cycles 
Haraka-192f-simple-L3 732 770 cycles 21 433 286 cycles 1 205 698 cycles 
Haraka-192f-robust-L3 998 446 cycles  30 866 288 cycles 1 799 300 cycles 
Haraka-256s-simple-L5 28 822 310 cycles 451 164 660 cycles 696 980 cycles 
Haraka-256s-robust-L5 40 954 800 cycles 677 039 436 cycles 1 046 096 cycles 
Haraka-256f-simple-L5 1 809 078 cycles 41 973 226 cycles 1 252 598 cycles 
Haraka-256f-robust-L5 2 599 368 cycles 61 706 762 cycles 1 854 540 cycles 
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