

ETSI GS ENI 005 V3.1.1 (2023-06)

Experiential Networked Intelligence (ENI);
System Architecture

Disclaimer

The present document has been produced and approved by the Experiential Networked Intelligence (ENI) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 2

Reference
RGS/ENI-005v311_Sys_Arch

Keywords
API, architecture, artificial intelligence, closed
control loop, cognition, functional architecture,

functional block, intent management, management,
model-driven engineering, network, policy

management

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2023.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 3

Contents

Intellectual Property Rights .. 11

Foreword ... 11

Modal verbs terminology .. 11

Executive summary .. 11

Introduction .. 12

1 Scope .. 13

2 References .. 13

2.1 Normative references ... 13

2.2 Informative references .. 14

3 Definition of terms, symbols and abbreviations ... 17

3.1 Terms .. 17

3.2 Symbols .. 29

3.3 Abbreviations ... 29

4 Overview of System Architecture (informative) .. 31

4.1 Introduction .. 31

4.2 Motivation for ENI ... 31

4.3 Benefits of ENI ... 32

4.4 High-Level Description of the ENI System Architecture ... 33

4.4.1 Overall Description ... 33

4.4.2 The Assisted System ... 33

4.4.2.1 Introduction ... 33

4.4.2.2 Communication Options for All Classes of Assisted Systems .. 34

4.4.2.3 Class 1: An Assisted System that has No AI-based Capabilities .. 35

4.4.2.4 Class 2: An Assisted System with AI that is Not in the Control Loop .. 35

4.4.2.5 Class 3: An Assisted System with AI Capabilities in its Control Loop .. 36

4.4.2.5.1 Introduction ... 36

4.4.2.5.2 Class 3 Options .. 36

4.4.2.6 Summary of Interaction between the Assisted System and ENI ... 37

4.4.3 Communication and Interaction with Other External Systems ... 38

4.4.4 Mode of Operation .. 38

4.4.4.1 Allowed Modes of Operation .. 38

4.4.4.2 Setting the Mode of Operation .. 38

4.4.4.3 Interaction with the Assisted System .. 39

4.4.4.4 Selecting a Mode of Operation for a Class of Decisions ... 39

4.4.4.5 Communication of Mode of Operation ... 39

4.4.4.6 Normal Operation of the Selected Mode of Operation.. 39

4.4.4.6.1 Overview ... 39

4.4.4.6.2 Case 1: ENI Indirectly Instructs the Assisted System to Switch Modes .. 40

4.4.4.6.3 Case 2: ENI Directly Instructs the Assisted System to Switch Modes .. 40

4.4.4.7 Normal Operation of the Selected Mode of Operation.. 40

4.4.4.8 Exception Handling for the Selected Mode of Operation ... 41

4.4.5 Functional Concepts ... 41

4.4.5.1 Functional Concepts for Modular System Operation .. 41

4.4.5.2 Overview of Prominent Control Loop Architectures .. 41

4.4.6 ENI Reference Points.. 41

4.4.6.1 Definition of an ENI Reference Point ... 41

4.4.6.2 Definition of an ENI External Reference Point ... 41

4.4.6.3 Definition of an ENI Internal Reference Point .. 41

4.4.7 ENI Interfaces ... 41

4.4.7.1 Definition of an ENI Interface .. 41

4.4.7.2 Definition of an ENI Hardware Interface .. 42

4.4.7.3 Definition of an ENI Software Interface ... 42

4.4.7.4 Definition of an ENI Application Programming Interface .. 42

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 4

4.4.7.5 Comparison of ENI Software Interfaces with ENI APIs ... 42

4.4.7.6 Interaction between ENI Hardware and Software Interfaces .. 42

4.4.7.7 Interaction between ENI Hardware and Software APIs .. 42

4.5 Functional Architecture .. 42

4.5.1 Functional Block Diagram of the ENI System ... 42

4.5.2 API Broker .. 44

4.5.2.1 Introduction ... 44

4.5.2.2 Definition of the ENI API Broker ... 45

4.5.2.3 Use of an API Broker in ENI .. 45

4.5.2.4 Alternatives to Using an API Broker .. 45

4.5.3 ENI System Functional Blocks ... 45

4.5.3.1 Introduction ... 45

4.5.3.2 Input Processing .. 45

4.5.3.2.1 Overview ... 45

4.5.3.2.2 Data Ingestion Functional Block ... 46

4.5.3.2.3 Normalization Functional Block ... 46

4.5.3.3 Analysis ... 46

4.5.3.3.1 Knowledge Management and Processing .. 46

4.5.3.4 Situation-based, Model-driven, Policy Generation ... 47

4.5.3.4.1 Overview ... 47

4.5.3.4.2 Situation Awareness Functional Block .. 47

4.5.3.4.3 Model Driven Engineering Functional Block .. 47

4.5.3.4.4 Policy Management Functional Block ... 48

4.5.3.5 Output Generation ... 48

4.5.3.5.1 Overview ... 48

4.5.3.5.2 Denormalization Functional Block .. 49

4.5.3.5.3 Output Generation Functional Block ... 49

4.5.4 Decision-Making .. 49

4.5.4.1 Overview ... 49

4.5.4.2 Decision-Making using Hindsight .. 49

4.5.4.3 Decision-Making using Deterministic Processing .. 49

4.5.4.4 Decision-Making using Predictive Processing .. 50

4.5.4.5 Decision-Making using Cognitive Processing .. 50

4.5.5 Introduction to Artificial Intelligence Mechanisms for Modular Systems .. 50

5 ENI Architectural Requirements .. 50

5.1 Introduction .. 50

5.2 Functional Architectural Requirements for ENI Operation .. 50

5.3 Architectural Requirements for Mode of Operation ... 52

5.4 Non-Functional Architectural Requirements for ENI Operation .. 53

5.5 Reference Point Requirements ... 53

5.6 Knowledge Modeling Requirements .. 54

5.7 Control Loop Processing Requirements ... 56

5.8 Functional Block Processing Requirements ... 57

5.8.1 Context Processing Requirements .. 57

5.8.2 Cognition Requirements ... 57

5.8.3 Policy Management Requirements ... 58

5.9 AI Modelling and Training Model Requirements .. 59

5.10 API Requirements .. 60

6 ENI Reference Architectural Framework ... 61

6.1 Introduction .. 61

6.2 Design Principles of the ENI System architecture ... 61

6.2.1 Overview .. 61

6.2.2 Nesting of Functional Blocks.. 62

6.2.3 Communication and Interaction .. 63

6.2.3.1 Introduction ... 63

6.2.3.2 Discovery .. 63

6.2.3.3 Direct Communication .. 63

6.2.3.4 Indirect Communication .. 64

6.2.3.5 Negotiation .. 64

6.2.3.5.1 Introduction ... 64

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 5

6.2.3.5.2 Distributive Negotiation .. 64

6.2.3.5.3 Integrative Negotiation .. 64

6.2.3.5.4 Functional Model: an Informative Example .. 64

6.2.3.5.5 Usage ... 65

6.2.4 Administrative and Management Domains ... 65

6.2.4.1 Introduction ... 65

6.2.4.2 Domain Operations ... 66

6.2.4.3 Interaction between Hierarchical Domains ... 66

6.2.4.4 Interaction between Distributed Administrative Domains .. 68

6.2.4.5 Interaction between Federated Administrative Domains .. 68

6.2.5 Modelled Knowledge .. 68

6.2.6 Bias ... 68

6.2.6.1 Introduction ... 68

6.2.6.2 Protection Against Bias ... 69

6.2.6.3 Adherence to Applicable Standards to Mitigate Bias .. 69

6.2.7 Ethics .. 69

6.2.7.1 Introduction ... 69

6.2.7.2 Methods to Ensure Ethical Decision-Making.. 70

6.2.7.3 Adherence to Applicable Standards and Initiatives ... 70

6.2.8 The Assisted System ... 71

6.2.8.1 Overview ... 71

6.2.8.2 Class 1 and 2 Assisted Systems ... 72

6.2.8.3 Class 3 Assisted Systems .. 72

6.2.8.3.1 Single Class 3 Assisted Systems ... 72

6.2.8.3.2 Multiple Class 3 Assisted Systems .. 73

6.3 Architectural Functional Blocks of the ENI System .. 75

6.3.1 ENI Functional Architecture with Reference Points ... 75

6.3.1.1 Introduction ... 75

6.3.1.2 ENI Functional Architecture with External Reference Points ... 75

6.3.1.3 ENI Functional Architecture with Internal Reference Points .. 76

6.3.1.4 ENI Functional Architecture with Administrative and Management Domains 76

6.3.1.5 ENI Functional Architecture with Control Loops ... 78

6.3.1.6 ENI Functional Architecture with Domains and Control Loops ... 80

6.3.2 Data Ingestion Functional Block .. 80

6.3.2.1 Introduction ... 80

6.3.2.2 Motivation ... 81

6.3.2.3 Function of the Data Ingestion Functional Block .. 81

6.3.2.3.1 Introduction ... 81

6.3.2.3.2 Data Filtering ... 82

6.3.2.3.3 Data Correlation .. 82

6.3.2.3.4 Data Cleansing... 82

6.3.2.3.5 Data Anonymization and Pseudonymization ... 82

6.3.2.3.6 Data Augmentation .. 82

6.3.2.3.7 Data Labelling and Annotation .. 83

6.3.2.4 Operation of the Data Ingestion Functional Block .. 84

6.3.2.4.1 Introduction ... 84

6.3.2.4.2 Telemetry Processing .. 85

6.3.2.4.3 Use of Metadata ... 86

6.3.2.4.4 Use of Structure, Pattern, and Feature Matching ... 86

6.3.2.4.5 Use of AI-based Mechanisms .. 87

6.3.2.4.6 Use of Formal Logic and Ontologies... 87

6.3.3 Data Normalization Functional Block .. 88

6.3.3.1 Introduction ... 88

6.3.3.2 Motivation ... 88

6.3.3.3 Function of the Data Normalization Functional Block ... 88

6.3.3.4 Operation of the Data Normalization Functional Block .. 88

6.3.3.4.1 Introduction ... 88

6.3.3.4.2 Database Design Analogy (informative) ... 89

6.3.3.4.3 Normalization for Machine Learning .. 89

6.3.3.4.4 Applying Normalization to ENI .. 90

6.3.3.4.5 Storing Normalized Telemetry Information .. 91

6.3.3.4.6 Changing Telemetry Gathering using Policies .. 91

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 6

6.3.3.4.7 Cognitive and Situation-Aware Directed Normalized Telemetry Gathering 91

6.3.3.4.8 Use of Metadata ... 91

6.3.3.4.9 Use of Structure, Pattern, and Feature Matching ... 91

6.3.3.4.10 Use of AI-based Mechanisms .. 91

6.3.3.4.11 Use of Formal Logic and Ontologies... 92

6.3.4 Knowledge Management Functional Block .. 92

6.3.4.1 Introduction ... 92

6.3.4.2 Inferencing .. 92

6.3.4.3 Motivation ... 93

6.3.4.4 Knowledge Processing .. 93

6.3.4.4.1 Knowledge Representation and Enhancement .. 93

6.3.4.4.2 Knowledge Normalization ... 95

6.3.4.4.3 Transforming Data, Information, and Knowledge into Wisdom ... 95

6.3.4.4.4 Semantic Bus ... 96

6.3.4.5 Repositories ... 96

6.3.4.5.1 Overview ... 96

6.3.4.5.2 Data Repository ... 97

6.3.4.5.3 Model Repositories .. 97

6.3.4.5.4 Knowledge Repositories .. 97

6.3.4.5.5 Blackboard Repositories .. 98

6.3.4.5.6 Repository Operation ... 99

6.3.4.5.7 Semantically Augmented Query and Learning .. 99

6.3.4.6 Function of the Knowledge Management Functional Block ... 99

6.3.4.6.1 Introduction ... 99

6.3.4.6.2 Grounding Knowledge Using Semantics ... 100

6.3.4.6.3 Resolving Knowledge Conflicts .. 100

6.3.4.6.4 Knowledge Distribution .. 100

6.3.4.7 Operation of the Knowledge Management Functional Block ... 100

6.3.4.7.1 Introduction ... 100

6.3.4.7.2 Observe Functionality ... 101

6.3.4.7.3 Orient Functionality ... 102

6.3.4.7.4 Decide Functionality ... 102

6.3.4.7.5 Model-Driven-Enhanced Decide Functionality ... 103

6.3.4.7.6 Act Functionality ... 103

6.3.4.7.7 Model-Driven-Enhanced Act Functionality .. 103

6.3.4.7.8 Learning-Enhanced OODA ... 103

6.3.4.7.9 Reasoning-Enhanced OODA ... 104

6.3.5 Context-Aware Management Functional Block .. 104

6.3.5.1 Introduction ... 104

6.3.5.2 Motivation ... 104

6.3.5.3 Function of the Context-Aware Management Functional Block ... 104

6.3.5.3.1 Introduction ... 104

6.3.5.3.2 Modelling and Representation of Context Awareness ... 105

6.3.5.3.3 Processing Contextual Updates ... 107

6.3.5.4 Operation of the Context-Aware Management Functional Block ... 108

6.3.6 Cognition Management Functional Block .. 110

6.3.6.1 Introduction ... 110

6.3.6.2 Motivation ... 110

6.3.6.3 Function of the Cognition Management Functional Block ... 110

6.3.6.3.1 Introduction (informative) ... 110

6.3.6.3.2 The Symbolic Approach (informative) .. 111

6.3.6.3.3 The Connectionist Approach (informative) ... 113

6.3.6.3.4 Cognitive System... 113

6.3.6.3.5 Cognition Model .. 114

6.3.6.4 Operation of the Cognition Management Functional Block ... 117

6.3.7 Situational Awareness Functional Block .. 117

6.3.7.1 Introduction ... 117

6.3.7.2 Motivation ... 117

6.3.7.3 Function of Situational Awareness ... 117

6.3.7.4 Operation of the Situational Awareness Functional Block ... 118

6.3.7.4.1 Introduction ... 118

6.3.7.4.2 Use of Memory and the Cognition Model ... 118

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 7

6.3.7.4.3 Definition and Management of Goals to be Achieved ... 118

6.3.7.4.4 Architecture of a Cognitive Functional Block ... 118

6.3.7.4.5 Leveraging Historical Situation Information ... 120

6.3.7.5 Difference between Context Awareness and Situational Awareness .. 121

6.3.7.6 Difference between Cognition Management and Situational Awareness ... 121

6.3.8 Model Driven Engineering Functional Block ... 121

6.3.8.1 Introduction ... 121

6.3.8.2 Motivation ... 121

6.3.8.3 Function of the Model Driven Engineering Functional Block .. 122

6.3.8.4 Operation of the Model Driven Engineering Functional Block .. 122

6.3.8.4.1 Introduction ... 122

6.3.8.4.2 Knowledge Data Fusion, Transformation, and Processing .. 124

6.3.8.4.3 Knowledge Transformation into Policy Information ... 124

6.3.9 Policy Management Functional Block .. 124

6.3.9.1 Introduction ... 124

6.3.9.2 Motivation ... 124

6.3.9.3 Modelling and Representing Types of Policies ... 125

6.3.9.3.1 Introduction ... 125

6.3.9.3.2 Reuse of the MEF Policy Model ... 125

6.3.9.3.3 Reuse of the MEF Core Model .. 125

6.3.9.3.4 Types of Policies Used in ENI .. 126

6.3.9.3.5 Overview of a Unified Policy Information Model ... 127

6.3.9.4 Processing Policies .. 127

6.3.9.4.1 Introduction ... 127

6.3.9.4.2 Constructing Policies: Parsers vs. Compilers vs. Interpreters ... 127

6.3.9.4.3 Policy Languages... 127

6.3.9.4.4 Policy Scope .. 128

6.3.9.5 Function of the Policy Management Functional Block ... 131

6.3.9.6 Operation of the Policy Management Functional Block ... 131

6.3.9.6.1 Introduction ... 131

6.3.9.6.2 The Policy Continuum ... 132

6.3.9.6.3 Policy Management Architecture .. 133

6.3.9.6.4 Policy Management Federation ... 139

6.3.9.6.5 Constructing, Deploying, and Activating Policies ... 139

6.3.9.6.6 Managing Policies ... 140

6.3.9.6.7 Deactivating and Removing Policies ... 141

6.3.10 Denormalization Functional Block ... 142

6.3.10.1 Introduction ... 142

6.3.10.2 Motivation ... 142

6.3.10.3 Function of the Denormalization Functional Block .. 142

6.3.10.4 Operation of the Denormalization Functional Block .. 143

6.3.11 Output Generation Functional Block .. 144

6.3.11.1 Introduction ... 144

6.3.11.2 Motivation ... 144

6.3.11.3 Function of the Output Generation Functional Block ... 144

6.3.11.4 Operation of the Output Generation Functional Block ... 144

6.3.11.4.1 Introduction ... 144

6.3.11.4.2 Treating Output Generation as the Inverse of Normalization .. 145

6.4 API Broker ... 146

6.4.1 Introduction... 146

6.4.2 Motivation... 146

6.4.3 Function of the API Broker .. 146

6.4.4 Operation of the API Broker ... 147

6.5 Communication Between Functional Blocks ... 148

6.5.1 Introduction... 148

6.5.2 Common Communication Requirements .. 148

6.5.3 Recommended Communication Patterns to be Used Within ENI .. 149

6.5.3.1 Introduction ... 149

6.5.3.2 Remote Procedure Calls and Remote Method Invocations ... 149

6.5.3.3 Batch File Exchange ... 149

6.5.3.4 Shared Database .. 149

6.5.3.5 Messaging ... 150

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 8

6.5.3.5.1 Introduction ... 150

6.5.3.5.2 Common Requirements of Messaging Systems .. 150

6.5.3.5.3 Messaging Functionality.. 151

6.5.4 Recommended Communication Patterns to be Used Between ENI and External Systems 151

6.6 Security Considerations .. 151

7 Reference Points ... 152

7.1 Introduction .. 152

7.2 External Reference Point Overview ... 152

7.3 External Reference Point Definitions ... 156

7.3.1 Reference Point Eoss-eni-dat .. 156

7.3.2 Reference Point Eoss-eni-cmd ... 156

7.3.3 Reference Point Eoss-eni-pol .. 156

7.3.4 Reference Point Eapp-eni-ctx.. 157

7.3.5 Reference Point Eapp-eni-oth ... 157

7.3.6 Reference Point Eapp-eni-kno ... 158

7.3.7 Reference Point Eapp-eni-pol ... 158

7.3.8 Reference Point Ebss-eni-dat .. 158

7.3.9 Reference Point Ebss-eni-cmd ... 159

7.3.10 Reference Point Ebss-eni-pol .. 159

7.3.11 Reference Point Eusr-eni-pol .. 159

7.3.12 Reference Point Eor-eni-dat ... 160

7.3.13 Reference Point Eor-eni-cmd .. 160

7.3.14 Reference Point Eor-eni-pol ... 160

7.3.15 Reference Point Einf-eni-dat .. 161

7.3.16 Reference Point Einf-eni-cmd ... 161

7.3.17 Reference Point Eeni-api-in ... 161

7.3.18 Reference Point Eeni-api-out .. 161

7.3.19 Reference Point Eeni-api-dev.. 162

7.3.20 Reference Point Eeni-api-run .. 162

7.3.21 Reference Point Eeni-api-dmg ... 162

7.3.22 Reference Point Eeni-api-emg ... 163

7.4 External Reference Points Protocol Specification .. 163

7.4.1 Introduction... 163

7.4.2 Generic Protocols for use with External Reference Points ... 163

7.4.3 Specific Protocols for use with External Reference Points ... 164

7.4.3.1 gRPC and HTTP/2 .. 164

7.4.3.2 GraphQL and HTTP/1.1 .. 164

7.4.3.3 HATEOAS and HTTP/1.1 .. 164

7.4.3.4 REST and HTTP/1.1 ... 164

7.5 ENI API Overview ... 164

7.5.1 Introduction... 164

7.5.2 API Architectural Styles ... 167

7.5.2.1 Introduction ... 167

7.5.2.2 Challenges in API Architectures ... 168

7.5.2.3 REST API Style .. 168

7.5.2.4 HATEOAS API Style ... 169

7.5.2.5 GraphQL API Style ... 170

7.5.2.6 gRPC API Style .. 170

7.5.2.7 ENI API Architectural Style Recommendations ... 172

7.5.3 ENI API Functional Blocks .. 173

7.5.3.1 ENI API Development Functional Block .. 173

7.5.3.1.1 Introduction ... 173

7.5.3.1.2 ENI Broker API Orchestration Layer .. 174

7.5.3.1.3 ENI Broker API Management Functional Blocks ... 174

7.5.3.2 ENI API Runtime Functional Block ... 176

7.5.3.3 ENI Management Services Functional Block ... 176

7.5.3.4 ENI Security Services Functional Block ... 177

7.5.3.5 ENI Analytic Services Functional Block .. 177

7.5.4 ENI API System Deployment Models .. 177

7.5.4.1 On Premise vs. Cloud-Based Deployment .. 177

7.5.4.2 ENI API Architecture Environment .. 177

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 9

7.5.4.3 Securing the ENI API Broker from the Internet .. 177

7.5.4.4 Scaling the ENI API Broker .. 178

7.6 Internal Reference Point Overview .. 178

7.7 Internal Reference Point Definitions .. 179

7.7.1 Reference Point Iing-norm ... 179

7.7.2 Reference Point Inorm-sem .. 179

7.7.3 Reference Point Isem-km .. 180

7.7.4 Reference Point Isem-ca ... 180

7.7.5 Reference Point Isem-cog .. 180

7.7.6 Reference Point Isem-sa ... 180

7.7.7 Reference Point Isem-mde ... 180

7.7.8 Reference Point Isem-pm .. 180

7.7.9 Reference Point Isem-denorm ... 181

7.7.10 Reference Point Idenorm-out .. 181

7.8 Internal Reference Point Protocol Specification ... 181

7.8.1 Introduction... 181

7.8.2 Generic Protocols for use with Internal Reference Points .. 181

7.8.3 Specific Protocols for use with Internal Reference Points .. 181

8 ENI API Design ... 182

8.1 Introduction .. 182

8.2 Design Goals .. 182

8.3 Methodology for Constructing APIs .. 183

8.3.1 Introduction... 183

8.3.2 Common API Paradigms .. 183

8.3.3 gRPC API Construction .. 184

8.3.4 gRPC Integration .. 187

8.4 Overview of API Functionality .. 187

8.4.1 Introduction... 187

8.4.2 External Reference Point Eoss-eni-dat.. 188

8.4.3 External Reference Point Eoss-eni-cmd .. 189

8.4.4 External Reference Point Eoss-eni-pol ... 190

8.4.5 External Reference Point Eapp-eni-ctx ... 192

8.4.6 External Reference Point Eapp-eni-oth ... 195

8.4.7 External Reference Point Eapp-eni-kno .. 198

8.4.8 External Reference Point Eapp-eni-pol ... 201

8.4.9 External Reference Point Ebss-eni-dat.. 204

8.4.10 External Reference Point Ebss-eni-cmd .. 205

8.4.11 External Reference Point Ebss-eni-pol ... 206

8.4.12 External Reference Point Eusr-eni-pol.. 208

8.4.13 External Reference Point Eor-eni-dat ... 210

8.4.14 External Reference Point Eor-eni-cmd ... 212

8.4.15 External Reference Point Eor-eni-pol... 213

8.4.16 External Reference Point Einf-eni-dat .. 215

8.4.17 External Reference Point Einf-eni-cmd ... 217

9 Interacting with Other Standardized Architectures .. 218

9.1 Introduction .. 218

9.2 Generic Architecture .. 218

9.3 Generic SDO Interaction Architecture ... 220

9.3.1 Introduction... 220

9.4 Interaction with NFV MANO .. 220

9.4.1 High Level description of the NFV MANO - ENI Interaction ... 220

9.4.2 Initial proposals for interaction scenarios ... 222

9.4.2.1 Introduction ... 222

9.4.2.2 Scenario 1: Passive Notification to NFV MANO ... 222

9.4.2.3 Scenario 2: Active Data Analysis for NFV MANO .. 222

9.4.2.4 Scenario 3: Active Assistance to the NFV MANO System .. 222

9.4.2.5 Scenario 4: Active Assistance to the Assisted System .. 222

9.4.3 Interaction Scenarios for Assisted Policy Management in NFV MANO ... 223

9.5 Interaction with the MEF LSO RA .. 223

10 Areas for Future Study ... 223

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 10

10.1 Open Issues for the Present Document ... 223

10.2 Issues for Future Study ... 223

Annex A (informative): SDO and Open Source Interactions ... 225

A.1 Integration with Other SDOs and Open Source Communities ... 225

A.1.1 Introduction .. 225

A.1.2 Interaction with BBF CloudCO .. 225

A.2 Interaction with Open Source Communities .. 226

Annex B (informative): ENI Architectural Evolution ... 227

B.1 ENI Architecture Evolution Motivation ... 227

B.2 ENI Architecture Evolution Proposal ... 227

B.3 Proposed Definition of the ENI Phases .. 227

Annex C (informative): Bibliography ... 228

History .. 229

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 11

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Experiential Networked
Intelligence (ENI).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary
The present document specifies a high-level functional abstraction of the ENI System Architecture in terms of
Functional Blocks and External Reference Points. This includes describing how different classes of systems interact
with ENI. Processes, models, and detailed information are beyond the scope of the present document.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 12

Introduction
The present document defines a high-level functional abstraction of the ENI System Architecture. The organization of
the present document is as follows:

• clause 1 defines the scope of the present document;

• clauses 2 and 3 provide normative and informative references and definition of terms, respectively;

• clause 4 provides an informative overview of the ENI System Architecture, including its motivation, benefits,
important concepts, and an overview of its Functional Blocks;

• clause 5 lists requirements of the ENI System Architecture;

• clause 6 defines important design principles of the ENI System Architecture, and then specifies the different
Functional Blocks that make up the ENI System Architecture;

• clause 7 specifies the External Reference Points of the ENI System Architecture;

• clause 8 specifies the initial design of ENI Application Programming Interfaces

• clause 9 describes how ENI interacts with other SDO Systems; and

• clause 10 delineates a list of future study items.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 13

1 Scope
The present document specifies the functional architecture of an ENI System, which is a high-level decomposition of an
ENI System into its major components, along with a characterization of the externally visible behaviour (e.g. as defined
by a set of reference points) of the components. This includes:

• defining the functionality and behaviour of a system that satisfy the ENI Requirements (ETSI
GS ENI 002 [i.40]);

• defining a functional architecture, in terms of Functional Blocks, that addresses the goals specified by the ENI
Use Cases (ETSI GS ENI 001 [3]);

• defining Reference Points used by the above Functional Blocks for all communication with systems and
entities that are external to the ENI System;

• proposing a progression plan towards full support of the proposed ENI System and intermediary level of
compliance (e.g. support of some architecture components or a subset of the Reference Points).

The purpose of the present document is to continue the development of ETSI GS ENI 005 [i.53] (V2.1.1) to:

• define and specify APIs, Interfaces, and protocols used by ENI based on information and data models;

• specify the ENI cognition model in detail;

• enhance the description and specification of the ingestion, normalization, and output generation of data,
information, and policies (imperative, declarative, and intent) in greater detail;

• enhance the description and specification of the control loops used in ENI;

• enhance the description and specification of policy management used in ENI;

• enhance the description and specification of architectural principles for interacting with other groups within
and outside ETSI.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI GS NFV-MAN 001: "Network Functions Virtualisation (NFV); Management and
Orchestration".

[2] IETF RFC 4949: "Internet Security Glossary, Version 2", Shirey, R., August 2007.

[3] ETSI GS ENI 001 (V3.1.1): "Experiential Networked Intelligence (ENI); ENI use cases".

[4] Strassner, John and Agoulmine, Nazim and Lehtihet, E. (2006): "FOCALE: A Novel Autonomic
Networking Architecture". In: Latin American Autonomic Computing Symposium (LAACS),
2006, Campo Grande, MS, Brazil.

https://docbox.etsi.org/Reference/
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/
https://www.rfc-editor.org/info/rfc4949
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/001/03.01.01_60/gs_eni001v030101p.pdf
https://repository.wit.ie/189/1/2006_LAACS_Strassner_et_al_final.pdf
https://repository.wit.ie/189/1/2006_LAACS_Strassner_et_al_final.pdf

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 14

[5] Boyd, J. R.: "The Essence of Winning and Losing", June 1995..

[6] Strassner. J.: "Knowledge Representation, Processing, and Governance in the FOCALE
Autonomic Architecture", chapter 11 of Autonomic Network Management Principles, 2011,
Elsevier.

[7] MEF Standard MEF 78.1: " MEF Core Model (MCM)", July 2020.

[8] MEF Standard MEF 95: "MEF Policy Driven Orchestration (PDO)", July 2021.

[9] ETSI GS ENI 019 (V3.1.1): "Experiential Networked Intelligence (ENI); Representing, Inferring,
and Proving Knowledge in ENI".

[10] IETF RFC 7301: "Transport Layer Security (TLS) Application-Layer Protocol Negotiation
Extension", S. Friedl, A. Popov, A. Langley and E. Stephan, July 2014.

[11] IETF RFC 8447: "IANA Registry Updates for TLS and DTLS", J. Salowey, S. Turner, August
2018.

[12] Void.

[13] Void.

[14] Void.

[15] IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", D. Cooper, et al., May 2008.

[16] IETF RFC 6818: "Updates to the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile", P.Yee, January 2013.

[17] IETF RFC 8399: "Internationalization Updates to IETF RFC 5280", R. Housley, May 2018.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Strassner J.: "Policy-Based Network Management", Morgan Kaufman, ISBN 978-1558608597,
September 2003.

[i.2] Strassner J., de Souza J.N., Raymer D., Samudrala S., Davy S., Barrett K.: "The Design of a Novel
Context-Aware Policy Model to Support Machine-Based Learning and Reasoning", Journal of
Cluster Computing, Vol 12, Issue 1, pages 17-43, March 2009.

[i.3] Strassner J., van der Meer S., O'Sullivan D. and Dobson S.: "The Use of Context-Aware Policies
and Ontologies to Facilitate Business-Aware Network Management", Journal of Network and
Systems Management 17(3), pages 255-284, 2009.

[i.4] Strassner J., Betser J., Ewart R., Belz F.: "A Semantic Architecture for Enhanced Cyber
Situational Awareness", Secure and Resilient Cyber Architectures Conference, MITRE, 2010.

[i.5] Gamma E., Helm R. Johnson R., Vlissides J.: "Design Patterns: Elements of Reusable Object-
Oriented Software", Addison-Wesley, November 1994. ISBN 978-0201633610.

[i.6] Bäumer D., Riehle D., W. Siberski, M. Wulf: "The Role Object Pattern", Proceedings of the 1997
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA
'97), ACM Press, 1997, Pages 218-228.

https://fasttransients.files.wordpress.com/2010/03/essence_of_winning_losing.pdf
https://www.elsevier.com/search-results?query=978-0-12-382190-4
https://www.elsevier.com/search-results?query=978-0-12-382190-4
https://www.mef.net/resources/mef-78-1-mef-core-model-mcm/
https://www.mef.net/resources/mef-95-mef-policy-driven-orchestration
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/019/03.01.01_60/gs_eni019v030101p.pdf
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc8447
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc6818
https://www.rfc-editor.org/info/rfc8399

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 15

[i.7] Chin K.O., Ganb K.S., Alfred R., Anthony P. and Lukose, D.: "Agent Architecture: An
Overview", Transactions on Science and Technology, vol 1, No 1, pp 18-35, 2014.

[i.8] Shehory O. and Sturm A. editors: "Agent-Oriented Software Engineering", Springer, 2014.

[i.9] Martin R. C.: "Agile Software Development, Principles, Patterns, and Practices", Prentice Hall,
2003 ISBN 978-0135974445.

[i.10] Ritter F.E., Tehranchi F., Oury J.D.: "ACT-R: A Cognitive Architecture for Modeling Cognition",
Wiley Interdisciplinary Reviews, Cognitive Science 10(4): e1488.

[i.11] IETF RFC 8328: "Policy-Based Management Framework for the Simplified Use of Policy
Abstractions (SUPA)", Liu W., Xie C., Strassner J., Karagiannis G., Klyus M., Bi J., Cheng Y. and
D. Zhang.

[i.12] Rothenberg, J.: "The Nature of Modelling", Artificial Intelligence, Simulation, and Modeling, John
Wiley and Sons, Inc., 1989, pp. 75-92.

[i.13] Recommendation ITU-T 9594-1: "Information Technology - Open Systems Interconnection - The
Directory: Overview of Concepts, Models, and Services".

[i.14] Recommendation ITU-T 9594-7: "Information Technology - Open Systems Interconnection - The
Directory: Selected Object Classes".

[i.15] ETSI GR ENI 003 (V1.1.1): "Experiential Networked Intelligence (ENI); Context-Aware Policy
Management Gap Analysis".

[i.16] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).

[i.17] Mitchell Tom M.: "Machine Learning", McGraw-Hill, 978-0070428072.

[i.18] Gruber Thomas R.: "Toward Principles for the Design of Ontologies Used for Knowledge
Sharing", International Journal of Human Computer Studies, Vol 43, pp 907-928, 1993.

[i.19] Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M.: "Pattern-Oriented Software
Architecture - A System of Patterns", John Wiley and Sons, 1996.

[i.20] IEEE P7003TM: "Algorithmic Bias Considerations".

[i.21] Void.

[i.22] The Moral Machine project demonstration.

[i.23] Anderson M. and Anderson S.L.: "GenEth: A general ethical dilemma analyzer", AAAI, pages
253-261, 2014.

[i.24] Cointe N., Bonnel G. and Boissier O.: "Ethical judgment of agents' behaviors in multi-agent
systems", AAMAS, pages 1106-1114, 2016.

[i.25] The IEEETM Global Initiative on Ethics of Autonomous and Intelligent Systems.

[i.26] Gartner: "Magic Quadrant for Full Life Cycle API Management", October 2019.

[i.27] Koene A., Smith A.L., Egawa T., Mandalh S. and Hatada Y.: "IEEE P70xx, Establishing
Standards for Ethical Technology", KDD, 2018.

[i.28] Rao A.S. and Georgeff M.P.: "BDI Agents: From Theory to Practice", AAAI, 1995.

[i.29] IEEETM: "Ethically Aligned Design: A Vision for Prioritizing Human Well-being with
Autonomous and Intelligent Systems".

[i.30] Famaey J., Latré S., Strassner J. and De Turck F.: "An Ontology-Driven Semantic Bus for
Autonomic Communication Elements", IEEE International Workshop on Modeling Autonomic
Communication Environments, pages 37-50, 2010.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://sites.ieee.org/sagroups-7003/
http://moralmachine.mit.edu/
https://standards.ieee.org/industry-connections/ec/autonomous-systems.html
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ead_v2.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ead_v2.pdf

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 16

[i.31] OMG: "Semantics of Business Vocabulary and Rules", version 1.5, December 2019.

[i.32] Attempto Controlled English.

[i.33] ETSI GR ENI 008 (V2.1.1): "Experiential Networked Intelligence (ENI); InTent Aware Network
Autonomicity (ITANA)".

[i.34] Hohpe G. and Woolf B.: "Enterprise Integration Patterns", Addison-Wesley, 2003, ISBN
9780321200686.

[i.35] ETSI GR ENI 016 (V2.1.1): "Experiential Networked Intelligence (ENI); Functional Concepts for
Modular System Operation".

[i.36] ETSI GR ENI 017 (V2.1.1): "Experiential Networked Intelligence (ENI); Overview of Prominent
Control Loop Architectures".

[i.37] ETSI GR ENI 018 (V2.1.1): "Experiential Networked Interlligence (ENI); Introduction to
Artificial Intelligence Mechanisms for Modular Systems".

[i.38] Barrett K., Davy S., Strassner J., Jennings S., van der Meer S., Donnelly W.: "A Model Based
Approach for Policy Tool Generation and Policy Analysis", Global Information Infrastructure
Symposium, 2007.

[i.39] BBF TR-384: "Cloud Central Office Reference Architectural Framework", January 2018, G.
Karagiannis, D. Hai.

[i.40] ETSI GS ENI 002 (V3.1.1): "Experiential Networked Intelligence (ENI); ENI requirements".

[i.41] ETSI TR 103 240: "Powerline Telecommunications (PLT); Powerline communication
recommendations for smart metering and home automation".

[i.42] ETSI GS ENI 005 (V1.1.1): "Experiential Networked Intelligence (ENI); System Architecture",
September 2019.

[i.43] Minsky M.: "The Society of Mind", Simon and Schuster, New York, 1988.

[i.44] GRPC Core.

[i.45] Fielding R.T.: "Architectural Styles and the Design of Network-based Software Architectures",
Ph.D. thesis, 2000.

[i.46] IEEE 7000-2021TM: "IEEE Standard Model Process for Addressing Ethical Concerns during
System Design".

[i.47] IEEE 7001-2021TM: "IEEE Standard for Transparency of Autonomous Systems".

[i.48] IEEE 7002-2022TM: "IEEE Standard for Data Privacy Process".

[i.49] IEEE 7006TM: "Personal Data AI Agent" (work in progress).

[i.50] IEEE 7007-2021TM: "IEEE Ontological Standard for Ethically Driven Robotics and Automation
Systems".

[i.51] gPRC.

[i.52] OAuth 2.0.

[i.53] ETSI GS ENI 005 (V2.1.1): "Experiential Networked Intelligence (ENI); System Architecture".

[i.54] IEEE P7008™: "Standard for Ethically Driven Nudging for Robotic, Intelligent and Autonomous
Systems".

http://attempto.ifi.uzh.ch/site/resources/
https://grpc.github.io/grpc/core/md_doc_g_stands_for.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://grpc.io/docs/guides/auth/
https://oauth.net/2/

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 17

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

abstraction: hiding of unnecessary details to focus on data and information that is relevant for defining a particular
concept or process

NOTE: ETSI GR ENI 003 [i.15], defined abstraction as the "process of focusing on the important characteristics
and behaviour of a concept, and realizing this as a set of one or more elements in an information or data
model". The above definition is introduced to emphasize the importance of hiding (not deleting)
unnecessary details, and more importantly, removing the constraint of use for a model. Abstraction is
fundamentally a mental process that may take the form of model elements, but does not have to.

actor: role, played by an external entity (human or machine), which interacts with the subject of a use case

NOTE: An actor is always a type of stakeholder (but not vice versa). See stakeholder.

agent: computational process that implements the autonomous, communicating functionality of an application:

• software agent: software that acts on behalf of a user or another program

• software autonomous agent: software agent that acts on behalf of the entity that owns it without any
communication from the owning entity

• software intelligent agent: software agent that reasons about its environment and take the best set of actions
to satisfy a set of goals

NOTE: This has the connotation of containing AI mechanisms to provide the reasoning and decision-making
capabilities.

• software multi-agent: set of software agents that are physically separate that work together to satisfy a set of
goals

anomaly: measurable consequences of an unexpected change in state of a datum, or set of data, which is outside of its
local or global norm

API: set of communication protocols, code, and tools that enable one set of software components to interact with either
a human or a different set of software components

NOTE: This is also known as an Application Programming Interface.

API Broker: software entity that mediates between two systems with different APIs, enabling the two different systems
to communicate transparently with each other

architecture: set of rules and methods that describe the functionality, organization, and implementation of a system:

• cognitive architecture: system that learns, reasons, and makes decisions in a manner resembling that of a
human mind

NOTE 1: Specifically, the learning, reasoning, and decision-making is performed using software that makes
hypotheses and proves or disproves them using non-imperative mechanisms that typically involve
constructing new knowledge dynamically during the decision-making process.

• deliberative architecture: symbolic world model that enables problem-solving components to be built using a
sense-plan-act paradigm

• hybrid architecture: system made up of reactive and deliberative components that are combined into a
hierarchy of interacting layers, where each layer reasons at a different level of abstraction

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 18

• reactive architecture: system that is aware of changes that affect its computations and adjusts accordingly

NOTE 2: The adjustment is made by reacting to an event in real-time without centralized control. The availability
of new information drives program logic execution.

• software architecture: high-level structure and organization of a software-based system. this includes the
objects, their properties and methods, and relationships between objects

assisted system: system that the ENI system is providing recommendations and/or management commands to is
referred to as the "assisted system"

axiom: statement that is assumed to be true, in order to serve as a starting point for further reasoning

bias: systematic difference in treatment of certain objects, ideas, or people in comparison to others:

• algorithmic bias: algorithm that possesses systematic and repeatable errors that create unfair outcomes

• emergent bias: reliance on an algorithm that has not been adjusted to evaluate new forms of data

• inductive bias: set of assumptions that are used in a machine learning algorithm are used to predict outputs for
inputs that it has not encountered

Bidirectional Encoder Representations from Transformers (BERT): unsupervised deep learning strategy that
utilizes bidirectional models that considers all words of the input sentence simultaneously and then uses an attention
mechanism to develop a contextual meaning of the words

blackboard: architecture that uses a shared workspace that a set of independent agents contribute to, which contains
input data along with partial, alternative, and completed solutions

BSS-like functionality: used to support customer-facing activities for the operator

NOTE: Examples include customer service, rating, order management, billing, and settlement.

capability: type of metadata that represents a set of features that are available to be used from a managed entity

NOTE: These features may, but do not have to, be used. These features may represent all or a subset of the
functionality provided by a managed entity. Since a Functional Block is a type of managed entity,
Capabilities can be defined for Functional Blocks as well. A Capability provides information about the
functionality of a managed entity that enables management entities to decide whether that managed entity
is useful for a given task.

case-based reasoning: use of existing experiences and knowledge to understand and solve new problems

catastrophic forgetting: tendency of an artificial neural network to forget previously learned information when
learning new information

class: template for defining a specific type of object that exhibits a common set of characteristics and behaviour:

• abstract class: class that cannot be directly instantiated

• concrete class: class that can be directly instantiated

classifier: procedure that predicts which elements of a set belong to which (pre-defined) classes:

NOTE 1: The classification is done using training data whose category membership is known, and can be thought
of as a function that assigns a new observation a class label.

• binary classifier: classifier that decides whether or not an input belongs to one of two groups (i.e. classes)
based on a classification function

• discriminative classifier: classifies an object based on the class labels

NOTE 2: This directly estimates the conditional probability of P(Y|X). An example is logistic regression.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 19

• generative classifier: classifier that learns a model of the joint probability of an input x and the label y, uses
Bayes rules to calculate p(Y|X), and then assigns the most likely label

NOTE 3: This estimates P(Y|X) by estimating P(Y) and P(X|Y). An example is Naïve Bayes classifier.

• hierarchical classifier: classifier that maps input data into a tree-like set of output categories by first,
classifying at a low level, and then iterating each lower-level classification into a higher-level classification

• linear classifier: classifier that assigns a label based on a linear combination of its features

• probabilistic classifier: classifier that assigns a label to an object based on a (conditional) probability
distribution

clustering: grouping of a set of objects such that objects in the same group are more similar to each other, by one or
more measures, than to other objects in other groups

cognition: process of acquiring and understanding data and information and producing new data, information, and
knowledge:

• cognition model: computer model of how cognitive processes, such as comprehension, action, and prediction,
are performed and influence decisions

collaborating: two or more managed entities cooperate to accomplish a given task

compiler: computer program that translates the content of a source programming language into a different, or target,
programming language

concept drift: not taking changing data and its meanings into account when training an ML model

context: collection of measured and inferred knowledge that describe the environment in which an entity exists or has
existed

control loop: mechanism that senses the performance of an object or process being controlled to achieve desired
behaviour:

• adaptive closed control loop: closed control loop whose controlling function adapts to the object or process
being controlled using parameters that are either unknown and/or vary over time

• closed control loop: control loop whose controlling action is dependent on feedback from the object or
process being controlled

NOTE 1: This type of control loop measures the difference between the actual and desired values of a set of
variables to adjust a set of parameters to change the behaviour of the system to bring the actual value
closer to that of the desired value.

• cognitive closed control loop: closed control loop that selects data and behaviours to monitor that can help
assess the status of achieving a set of goals, and produce new data, information, and knowledge to facilitate the
attainment of those goals

• distributed closed control loop: closed control loop whose components are physically distributed among
different locations

• federated closed control loop: set of semi-autonomous closed control loops that use formal agreements to
govern their interaction and behaviour

• hierarchical closed control loop: closed control loop that is organized in the form of a tree

• open control loop: control loop whose controlling action is independent of the output of the object or process
being controlled

NOTE 2: This type of control loop does not link the control action to the object or process being controlled (it
simply continues to apply the control action).

• peer closed control loop: two or more closed control loops that may interact, but are independent of each
other

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 20

coupling: amount of interdependence between two components, modules, or systems

data mining: procedure that discovers patterns in, and extracts knowledge from, data sets

NOTE: For the purposes of ENI, these patterns are of two principal types:

1) patterns that cause the generation of data; and

2) patterns that relate data (typically in a semantic manner).

decidable: procedure that determines, by a mathematical formal means in a finite amount of time, whether a formula is
valid

decision making: set of processes that result in the selection of a set of actions to take from among several alternative
possible actions

denormalization: process of changing information from a canonical form to one specialized for a particular actor
and/or domain

designated entity: operator, nms, ems, controller, or orchestrator acting on behalf of the assisted system

NOTE: The designated entity is a trusted system, (a type of trusted entity [2]).

design pattern: general, reusable solution in a given context to a commonly occurring software problem:

NOTE: This type of design pattern is not an architecture and not even a finished design; rather, it describes how
to build the elements of a solution that commonly occurs. It may be thought of as a reusable template.

• design pattern, architecture: general, reusable solution in a given context to a commonly occurring problem
in the design of the software architecture of a system

• design pattern, software: general, reusable solution in a given context to a commonly occurring problem in
the design of a software system

domain: collection of Entities that share a common purpose:

NOTE 1: Each constituent Entity in a Domain is both uniquely addressable and uniquely identifiable within that
Domain. This is based on the definition of an MCMDomain in [7].

• administrative domain: domain that employs a set of common administrative processes to manage the
behaviour of its constituent Entities

NOTE 2: This is based on the definition in [7].

• management domain: domain that uses a set of common Policies to govern its constituent Entities

NOTE 3: A Management Domain refines the notion of a Domain by adding three important behavioural features:

1) it defines a set of administrators that govern the set of Entities that it contains;

2) it defines a set of applications that are responsible for different governance operations, such as
monitoring, configuration, and so forth;

3) it defines a common set of management mechanisms, such as policy rules, that are used to govern
the behaviour of MCMManagedEntities contained in the MCMManagementDomain. This is based
on the definition of an MCMDomain in [7].

ENI Interface: point across which two or more components exchange information:

• ENI API Interface: ENI Interface set of communication mechanisms through which a developer constructs a
computer program

• ENI Hardware Interface: ENI Interface across which electrical, mechanical, and/or optical signals are
conveyed from a sender to one or more receivers using one or more protocols

• ENI Software Interface: ENI Interface point through which communication with a set of resources
(e.g. memory or CPU) of a set of objects is performed

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 21

ENI Reference Point: logical point of interaction between specific Functional Blocks:

• ENI External Reference Point: ENI Reference Point that is used to communicate between an ENI Functional
Block and an external Functional Block of an external system

• ENI Internal Reference Point: ENI Reference Point that is used to communicate between two or more
Functional Blocks that belong to the ENI System

entity: object in the environment being managed that has a set of unique characteristics and behaviour

NOTE: Objects are represented by classes in an information model.

ethics: set of principles that govern the moral behaviour of a person or machine:

• consequentialist ethics: agent is ethical if and only if it considers the consequences of each decision and
chooses the decision that has the most moral outcome

• deontological ethics: agent is ethical if and only if it respects obligations, duties, and rights appropriate for a
given situation

• ethical dilemma: situation in which any available decision leads to infringing on one or more ethical
principles

• virtue ethics: agent is ethical if and only if it acts according to a set of moral values

feature: (traditionally), individually measurable property of an object under observation

feature: (for ENI), individually measurable characteristic or behaviour of an object being observed:

NOTE 1: Traditionally, individually measurable characteristics were assigned numerical values. For ENI, these
individually measurable characteristics or behaviours may be allowed to be numeric or other types of
data.

• feature construction: creating higher-level features from lower-level features (see feature hierarchy)

• feature engineering: process of transforming raw data into features that better represent the underlying
problem to the predictive models, resulting in improved model accuracy on unseen data

NOTE 2: Feature engineering is concerned with determining the best representation of the sample data to learn a
solution for a given problem.

• feature hierarchy: tree-like structure of features, where a higher-level object represents the composition of its
lower-level objects

formal: study of (typically linguistic) meaning of an object by constructing formal mathematical models of that object
and its attributes and relationships:

• formal grammar: set of structural rules that define how to form valid strings from a language's alphabet that
obey the syntax of the language

formula: finite sequence of symbols from an alphabet that is part of a formal language:

• atomic formula: formula that does not have logical connectives

• first-order logic formula: well-formed formula that has a subject and a predicate that can have quantifiers

NOTE 1: First-order logic restricts the predicate to refer to a single subject. Both the universal and existential
quantifiers may be used in constructing a first-order logic formula.

• propositional formula: well-formed formula that has a unique truth value

• well-formed formula: formula used in logic that obeys the grammatical rules of its formal language

NOTE 2: Feature engineering is concerned with determining the best representation of the sample data to learn a
solution for a given problem.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 22

functional architecture: model of the architecture that defines the major functions of each module, and how each
module interacts with each other

functional block: abstraction that defines a black box structural representation of the capabilities and functionality of a
component or module, and its relationships with other functional blocks

graph: collection of nodes, where some subset of the nodes is connected:

NOTE 1: Visually, a node is a "point" and a connection is a "line", called an "edge". For the purposes of ENI, any
graph may be directed, weighted, or both.

• directed graph: graph where each connection, or edge, has an associated direction

• graph loop: edge of a graph that joins a vertex to itself

NOTE 2: For ENI, graph loops are not permitted.

• hypergraph: graph in which generalized edges may connect more than two nodes

• multigraph: graph in which multiple edges between nodes are permitted

• weighted graph: graph where each connection, or edge, has an associated weight

hyperparameter: learning parameter that is set before the learning process is started:

• algorithm hyperparameter: hyperparameter that affects only the speed and/or quality of the learning process,
and does not affect the mathematical or statistical model used in the learning process (e.g. learning rate)

• model hyperparameter: hyperparameter that selects the mathematical or statistical model used in the learning
process (e.g. size and topology of the ANN)

hypothesis: set of statements for explaining an observation that is not yet known to be true

interpreter: computer program that directly executes code from a programming language without requiring the code to
have been compiled into a machine language program

knowledge: analysis of data and information, resulting in an understanding of what the data and information mean:

NOTE: Knowledge represents a set of patterns that are used to explain, as well as predict, what has happened, is
happening, or is possible to happen in the future; it is based on acquisition of data, information, and skills
through experience and education.

• inferred knowledge: knowledge that was created based on reasoning, using evidence provided

• measured knowledge: knowledge that has resulted from the analysis of data and information that was
measured or reported

• propositional knowledge: knowledge of a proposition, along with a set of conditions that are individually
necessary and jointly sufficient to prove (or disprove) the proposition

knowledge representation: definition of data and information, applied in a particular context, that enables a machine
to understand and use in computations

NOTE: This is available at http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html.

label: identification of an output value for a given input

NOTE: Supervised learning uses labelled data; semi-supervised learning uses labels for a portion of the training
data (the remaining training data are not labelled); unsupervised learning is based on training data that are
not labelled.

language: structured and well-defined system of communication:

• controlled language: restricted version of a single Natural Language that uses a subset of the grammar of the
Natural Language

http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 23

• Domain Specific Language (DSL): small human-understandable language that uses a higher level of
abstraction to communicate and configure software systems for a particular application domain:

- external DSL: DSL that has its own custom syntax

NOTE 1: An external DSL is not dependent on another language.

- internal DSL: DSL that defines a specific way to use a host language to give it a different feel

NOTE 2: An internal DSL does not require a custom compiler or interpreter, because it is embedded into its base
language.

• general purpose language: programming language that can address a wide variety of problems and domains

• natural language: human-understandable language that is is used to interact with a computer program

learning: process that acquires new knowledge and/or updates existing knowledge to optimize a function using sample
observations:

NOTE 1: The learning process adjusts parameters to minimize observed errors; if the error rate becomes too high,
then the ANN needs to be redesigned.

• active learning: learning algorithm that can query a user interactively to label data with the desired outputs

NOTE 2: The algorithm proactively selects the subset of examples to be labeled next from the pool of unlabeled
data. The idea is that an ML algorithm could potentially reach a higher level of accuracy while using a
smaller number of training labels if it were allowed to choose the data it wants to learn from.

• batch learning: type of offline learning algorithm that is updated (i.e. retrained) periodically

• deep learning: use of hierarchical computational models, which are composed of multiple processing layers,
to learn representations of data with multiple levels of abstraction

NOTE 3: This replaces manually-intensive processes, and enables a machine to both learn features and use them to
perform a task. Deep learning can be applied to almost any of the other algorithms defined here, as long
as there are at least two hidden layers.

• dictionary learning: use of sparse matrices to represent input data using a linear combination of elements
from a dictionary learned from training data

• distributed data learning: sets of data that are used to train multiple instances of the same model on different
subsets of the training data set in parallel

NOTE 4: The same model is available to all computational nodes, so that a single coherent output emerges
naturally by combining each of the model updates

• distributed learning: distribution of machine learning applications to multiple computing nodes

• distributed model learning: multiple exact copies of the same data sets are processed by working nodes that
operate on different parts of the model; the resulting model is an aggregate of each of these operations

• ensemble learning: use of multiple learning algorithms to obtain better performance in predicting results than
is possible from using any single learning algorithm

• explanation-based learning: learning generalized problem-solving by analysing solutions to specific
problems

NOTE 5: Explanation-based learning enables a search procedure, constrained by general domain knowledge related
to the context of the actual problem, to be used to provide more accurate and efficient learning in
knowledge-intensive systems.

• feature learning: learning representations of data that make it easier to discover information from raw data
when building different types of predictors (e.g. classifiers)

NOTE 6: This replaces manually-intensive processes, and enables a machine to both learn features and use them to
perform a task.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 24

• federated learning: approach that trains an algorithm across multiple decentralized entities holding local data
samples, without exchanging their data samples

NOTE 7: Each device trains the model on their own local data set, and then each client sends a model or model
update to a centralized service, which aggregates each client's contribution into one global model. The
centralized service then distributes the global model back to the clients.

• incremental learning: learning from a continuously changing source of data (e.g. streaming data) that arrives
over time

NOTE 8: This is a form of online learning.

• machine learning: use of a series of inputs to build a model, followed by the use of that model to create a
representation, a decision, a prediction, or an answer

NOTE 9: Decisions are made without explicit instructions (e.g. through inferencing or other types of logical
actions). A more formal definition is "A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E" [i.17]. It is a subset of Artificial Intelligence genre.

• offline learning: data set being worked on does not change

NOTE 10: This means that parameters defined during the training depend on the entire training data set (e.g. are
global).

• online learning: learning when data is not previously available

NOTE 11: In this approach, data arrives over time, and a model is first inferred, and then refined after each
subsequent time step. It is similar to incremental learning, except that it is bounded in time (and possibly
other factors, such as model complexity and resources).

• reinforcement learning: use of software agents to take actions in an environment in order to maximize a
cumulative reward

NOTE 12: The learning agent is not told which actions to take, but instead needs to discover which actions yield the
highest reward.

• rule-based learning: use of rules to represent the knowledge of a system

NOTE 13: This type of system learns rules to make decisions, instead of using a model. These rules are different
than other types of rule-based systems because this set of rules are learned, while rules in other types of
systems are defined.

• semi-supervised learning: hybridisation of supervised and unsupervised learning, where the training data
consists of both labelled and unlabelled data

• supervised learning: learning a function that maps an input to an output based on example pairs of labelled
inputs and outputs

• unsupervised learning: learning a function that maps an input to an output without the benefit of the data
being classified or labelled

lexeme: linguistic unit of meaning, consisting of a word or group of words

NOTE: A lexeme is an abstract unit that can have many different forms. For example, in inflectional languages, a
lexeme will have many forms (e.g. present and past). Idioms, as well as expressions, are also lexemes.

lexicon: collection of all words, phrases and symbols used in a language, along with their definition(s) and meaning(s)

NOTE: More formally, a lexicon is the complete set of morphemes in a language, along with their definitions and
grammatical rules, that enables a complete vocabulary to be defined.

location: physical geographic location (e.g. a geocode or a bounding polygon) of an entity (e.g. a server)

NOTE: Contrast this with Placement.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 25

logic: formal or informal language that evaluates a conclusion based on a set of premises:

• alethic logic: representing, using mathematical formalisms, expressions involving necessity, possibility, and
contingency

• defeasible logic: representing, using mathematical formalisms, weak rules that are not necessarily justified by
the fact, and could thus be proven incorrect

NOTE 1: Defeasible logic (and reasoning) uses three types of rules: strict rules that are TRUE, weak rules that may
be true if no evidence can be found to contradict them, and "defeaters" that represent contradictory
evidence to prove that a weak rule is incorrect.

• deontic logic: representing, using mathematical formalisms, expressions involving obligation, permission, and
the concept of being forbidden

• description logic: family of formal languages that are subsets of first-order logic to ensure decidability and
efficiency

• doxastic logic: representing, using mathematical formalisms, expressions involving the belief of a particular
entity or set of entities

• first-order logic: extension of propositional logic to include predicates and quantification

• fuzzy logic: type of many-valued logic that allows a truth value to be any real number between 0 and 1
inclusive

NOTE 2: Fuzzy logic is most often used to reason about the degree of truth, or probability, in a system.

• modal logic: representing, using mathematical formalisms, expressions involving necessity and possibility

• propositional logic: manipulation of a set of propositions, possibly with logical connectives, to prove or
disprove a conclusion

NOTE 3: Propositional logic does not deal with logical relationships and properties that involve the parts of a
statement smaller than the statement itself. It also called sentential logic, zeroth-order logic, and
propositional (or sentential) calculus.

• temporal logic: representing, using mathematical formalisms, expressions involving time (e.g. it will be, it
will always be, it was, and it has always been)

logic clause: expression made up of a finite set of literals (i.e. literals), including the negation of literals:

NOTE 1: In propositional logic, a literal is a variable. In predicate logic, a literal is an atomic formula.

• Boolean clause: expression that, when evaluated, produces a value of either true or false

• Fact (clause): Horn clause with no negative literals

• Goal clause: Horn clause without a positive literal

• Horn clause: disjunction of literals that contains at most one positive literal

NOTE 2: This is also called a definite clause. This is used in some types of automated theorem proving.

message system: system that transfers data between components

model: representation of the entities of a system, including their relationships and dependencies, using an established
set of rules and concepts:

• data model: representation of concepts of interest to an environment in a form that is dependent on data
repository, data definition language, query language, implementation language, and/or protocol

NOTE 1: This definition is taken from [7].

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 26

• information model: representation of concepts of interest to an environment in a form that is independent of
data repository, data definition language, query language, implementation language, and protocol

NOTE 2: This definition is taken from [7].

• machine learning model: representation of a deterministic system using mathematical and/or logical
formalisms

NOTE 3: A deterministic system is a system in which successive states of a system are determined by its preceding
state; this means that an algorithm, given a particular input, will always produce the same output

• ML model: machine learning model

• statistical model: representation of a non-deterministic system using a set of statistical assumptions that
describe how system data are generated

NOTE 4: In this model, randomness is introduced via defining some variables as stochastic (i.e. their values depend
on the outcome of a random phenomenon). This is typically represented using probability distributions.

Model-Driven Behaviour (MDB): approach in which the behaviour of components, modules of systems are managed
using MDE

NOTE: For ENI, this applies to Functional Blocks, not components within a Functional Block.

Model-Driven Engineering (MDE): approach in which models are central to all phases of the development and
implementation processes

model element: attributes, methods, constraints, relationships, and stereotypes used in constructing a model

morpheme: smallest unit of meaning in a language

negotiation: set of communications that is intended to reach a beneficial outcome for a set of conflicting issues:

• distributive negotiation: zero-sum game, in which each participant assumes that there is a fixed amount of
value to be divided between the (winning) bidders

• integrative negotiation: win-win (or non-zero-sum) game, in which all collaborating participants receive
optimal value

neural network: network of nodes that communicate with other nodes via specialized connections:

NOTE 1: The above technically refers to the biological concept, where a node is a neuron (i.e. nerve cell). ENI will
use the term artificial neural network, or ANN, to refer to the artificial intelligence concept.

• artificial neural network: computing system that learns to perform functions by using artificial neurons that
take the form of a directed, weighted graph

NOTE 2: An ANN learns to perform a function by analysing examples (i.e. training data) instead of being
programmed to perform a task.

• artificial neuron: node in an ANN hat receives weighted input data, adds the data, and produces an output
using a non-linear output function

NOTE 3: The output function is also called a transfer function or activation function, and represents what portion of
the potential action is transmitted.

• feedforward neural network: ANN whose inter-nodal connections do not form a cycle

NOTE 4: Put another way, information always moves forward and never backwards. In general, any directed
acyclic graph is a type of feedforward neural network.

• recurrent neural network: ANN where connected between nodes form a directed graph across a temporal
sequence

NOTE 5: RNNs contain cyclic connections that make them effective in storing history and state. This is done by
using feedback loops in the processing of an output.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 27

normalization: process of changing ingested information to a canonical form

np-complete: class of computational problems for which no efficient solution algorithm has been found

object: instance of a concrete class

ontology (traditionally): explicit specification of a conceptualization [i.18]

NOTE: This definition is the basis for definitions in OneM2M and SmartM2M.

ontology (for ENI): language, consisting of a vocabulary and a set of primitives, that enable the semantic
characteristics of a domain to be modelled

OSS-like Functionality: used to support back-office activities that configure and operate a network for the operator

NOTE: Examples include inventory, configuration management, service assurance, and service activation.

parser: computer program that creates one or more data structures from an input programming language using an
associated formal grammar

perceptron: supervised learning algorithm for binary classifiers, where the classification function is based on a linear
function that combines the weighted sum of inputs with the feature vector:

NOTE 1: Since a linear function is used, a perceptron can only distinguish data that is linearly separable (compare
to multi-layer perceptron).

• multi-layer perceptron: type of feedforward ANN that consists of an input layer, an output layer, and one or
more hidden layers

NOTE 2: Since a non-linear function is used, a multi-layer perceptron can distinguish data that is not linearly
separable (compare to perceptron).

placement: logical placement of an entity (e.g. a virtual machine) on or in another entity (e.g. a server)

NOTE: Contrast this with Location.

planning: finding a procedural course of action for a declaratively described system to reach its goals while optimizing
overall performance measures

policy: set of rules that is used to manage and control the changing and/or maintaining of the state of one or more
managed objects:

NOTE 1: This is defined in [7] and [8], but see also [i.4].

• declarative policy: type of policy that uses statements from a formal logic to describe a set of computations
that need to be done without defining how to execute those computations

• ENI Policy Rules: set of imperative, declarative, and/or intent policy rules

• imperative policy: type of policy that uses statements to explicitly change the state of a set of targeted objects

NOTE 2: The canonical form of an imperative policy is a triple, consisting of a set of Event, Condition, and Action
Boolean clauses. Conceptually, it is evaluated as: when the Event Clause occurs, IF the Condition Clause
is TRUE, THEN a set of actions may be executed.

• intent policy: type of policy that uses statements from a restricted natural language (e.g. an external DSL) to
express the goals of the policy, but does not specify how to accomplish those goals

NOTE 3: In particular, formal logic syntax is not used. Therefore, each statement in an Intent Policy may require
the translation of one or more of its terms to a form that another managed functional entity can
understand.

• policy conflict: two policies that, when executed, cause contradictory and otherwise incompatible results
within a given execution time window

predicate: statement that can be true or false depending on the value of its variables

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 28

probability: numerical value defining the likelihood of an occurrent occurring:

• conditional probability distribution: probability of an event occurring given that another event already
occurred

• probability distribution: mathematical function that defines the probability of occurrence of all possible
outcomes of the random phenomenom being observed

process: execution of a set of instructions that produce a result

proposition: statement that can be true or false

NOTE: The above definition, though incomplete, will be used for ENI for this release. Formally, this definition of
a proposition is used in truth-functional propositional logic.

quantifier: specification of the number of objects in a given domain that satisfy a formula with at least one variable:

• existential quantifier: assertion that a property or relation holds for at least one member of a domain

• universal quantifier: assertion that a property or relation holds for all members of a domain

repository: centralized location of a set of storage devices that enable different functional blocks to store and retrieve
information:

• active repository: repository that pre- and/or post-processes information that is stored or retrieved

NOTE: It may contain dedicated (typically internal) Reference Points that provide the loading, activation,
deactivation, and unloading of specialized functions that change the pre- and/or post-processing
functionality according to the needs of the application.

• passive repository: repository that stores or retrieves information without pre- or post-processing

sample: set of objects selected or collected from a statistical population using a procedure

SDO system: part of an Assisted System that is defined by another SDO

NOTE: Examples include NFV MANO and MEF LSO.

semantic bus: type of message bus used to orchestrate and filter communications between ENI Functional Blocks
based on the meaning, attributes, and metadata of a message using a shared set of interfaces

semantic closeness: measure of how similar the semantics of two different sets of concepts are

NOTE: The types of semantic relationships may be changed to achieve a closer amount of semantic closeness.
This is one important mechanism in the knowledge discovery and alignment processes (see clause 6.3.4
for more information).

semantics: study of the meaning of something (e.g. a sentence or a relationship in a model)

situation: set of circumstances and conditions at a given time that may influence decision-making:

• situation awareness: perception of data and behaviour that pertain to the relevant circumstances and/or
conditions of a system or process, the comprehension of the meaning and significance of these data and
behaviours, and how processes, actions, and new situations inferred from these data and processes are likely to
evolve in the near future

NOTE: This definition is based on the material in [i.4].

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 29

stakeholder: set of individuals and/or organizations that may affect, be affected by, or perceive themselves to be
affected by a decision, activity, or outcome of a process

syntax: set of rules that govern how elements of a statement are structured, including what element goes where in a
statement

telemetry: automated process of recording and transmitting data to receiving equipment for monitoring purposes

NOTE: The process is typically automated, and the data transfer may include wireless, cellular, optical, and other
mechanisms.

theorem: set of statements that has been mathematically proven to be true, based on a set of axioms and/or (previously
proven) theorems

training: process of teaching an entity a set of knowledge, skills, processes, and/or behaviours:

• offline training: phase in machine learning that is used to create a model when the algorithm is not currently
being executed

• online training: phase in machine learning that is used to perform inferences in real-time (i.e. when the model
is actively being used)

use case: description of a specific configuration/deployment scenario of a system from the user point of view (ETSI
TR 103 240 [i.41])

use case (for ENI): list of actions defining the interactions between a set of actors and the system in order to achieve a
goal that has an observable result beneficial to a set of stakeholders

NOTE: The above definition of use case is more applicable for ENI modelling activities. In addition, the list of
actions may consist of different sets of actions to accomplish a goal.

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AAA Authentication, Authorization, and Accounting
ACT-R Adaptive Control of Thought-Rational
AES Advanced Encryption Standard
AI Artificial Intelligence
ALPN Application-Layer Protocol Negotiation
ANN Artificial Neural Network
API Application Programming Interface
ASIC Application Specific Integrated Circuit
BBF BroadBand Forum
BERT Bidirectional Encoder Representations from Transformers
BSS Business Support System
CA Certificate Authority
CLI Command Line Interface
CPU Central Processing Unit
DIKW Data-Information-Knowledge-Wisdom

NOTE: See ETSI GR ENI 016 [i.35].

DSL Domain Specific Language
EMS Element Management System
ENI Experiential Networked Intelligence
FB Functional Block
FOCALE Foundation Observation Comparison Action Learning Environment

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 30

FTP File Transfer Protocol
GDPR General Data Protection Regulation
GPL Graphics Purpose Language
GPS Global Positioning System
GPU Graphics Processing Unit
GR Group Report
gRPC gRPC Remote Procedure Call

NOTE: Originally, gRPC was a recursive acronym (the 'g' stood for gRPC). Now, the 'g' stands for various words
that start with the letter g. See [i.44].

GS ENI Group Specification of the Experiential Networked Intelligence ISG
GS Group Specification
GUI Graphical User Interface
HATEOAS Hypermedia As The Engine Of Application State
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IDL Interface Definition Language
IoT Internet of Things
IP Internet Protocol
ISG Industry Specification Group
ITU-T International Telecommunications Union - Telecommunication standardization sector
JSON JavaScript Object Notation
KPI Key Performance Indicator
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
LSO Lifecycle Service Orchestration
LSTM Long Short-Term Memory
MAC Media Access Control
MANO Management and Network Orchestration
MBT Model-Based Translation
MCM MEF Core Model
MDB Model-Driven Behaviour
MDE Model Driven Engineering
MEF MEF (a Standards body)
ML Machine Learning
MPM MEF Policy Model
mTLS mutual TLS
NER Named Entity Recognition
NFV Network Functions Virtualisation
NFVI Network Functions Virtualisation Infrastructure
NFVO Network Functions Virtualisation Orchestrator
NMS Network Management System
OAuth Open Authentication
OODA Observe-Orient-Decide-Act
OPEX OPerational EXpenditures
OSS Operations Support System
PMFB Policy Management Functional Block
RA Reference Architecture
RAML RESTful API Modelling Language
RDBMS Relational DataBase Management System
REST Representational State Transfer
RMI Remote Method Invocation
RNN Recurrent Neural Network
ROA Resource Orientated Architecture
RPC Remote Procedure Call
SBVR Semantics of Business Vocabulary and business Rules
SDN Software Defined Network
SDO Standards Defining Organization
SLA Service Level Agreement
SQL Structured Query Language
SSL Secure Socket Layer

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 31

TCP Transmission Control Protocol
TLS Transport Level Security
TR Technical Report
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
UTF Unicode Transformation Format
VIM Virtualised Infrastructure Management
VNF Virtualised Network Function
VNFM Virtualised Network Function Manager
VoLTE Voice over Long-Term Evolution
VPN Virtual Private Network
WADL Web Application Description Language
WAN Wide Area Network
WG Working Group
WSDL Web Service Description Language
XML eXtensible Markup Language
YANG Yet Another Next Generation

4 Overview of System Architecture (informative)

4.1 Introduction
This clause provides an informative introduction to the ENI System Architecture. Clauses 4.2 and 4.3 describe the
motivation and benefits of ENI. Clause 4.4 provides a high-level description of the ENI System Architecture, including
how it interacts with the Assisted System (and/or its Designated Entity), different types of Assisted Systems, the mode
of operation that the Assisted System (or its Designated Entity) can choose, direct and indirect communication between
the ENI System and the Assisted System (or its Designated Entity), and important concepts used in this System
Architecture. Clause 4.5 describes the functional architecture of the ENI System in terms of Functional Blocks. It ends
with a discussion of how decision-making is done in the ENI System.

NOTE: See clause 9 for further applicable future work.

4.2 Motivation for ENI
Current network management provisioning and monitoring functions are time-consuming and error-prone. This is due
to the proliferation of different technologies, as well as different implementations from different vendors. In addition,
users are demanding more complex services (e.g. context-aware, personalized services). Hence, operators are concerned
about the increasing complexity of integration of different platforms in their network and operational environment.
These human-machine interaction challenges increase the time to market of innovative and advanced services.
Moreover, there is no efficient and extensible standards-based mechanism to provide context-aware services (e.g.
services that adapt to changes in user needs, business goals, or environmental conditions).

These and other factors contribute to a very high OPerational EXpenditure (OPEX) for network operation and
management. Operators need to optimize the use of networked resources (e.g. through the automation of their network
configuration and monitoring processes to reduce this OPEX). More importantly, operators need to improve the use and
maintenance of their networks.

Indeed, operators are concerned about decreasing the number of the operator's personnel dedicated to managing the
infrastructure (e.g. how many people are required to control a given number of network devices, or particular structures,
such as SD-WANs). This requires improved automation and real-time closed control loops. Operators are also keenly
interested in improving infrastructure efficiencies. For example, it is likely that 5G and IoT are expected to have
complex interactions between different sets of network devices. Concurrently, user needs, business goals, and the
environment frequently change. Thus, network intelligence is needed to detect these contextual changes, determine
which groups of devices and services affect each other, and manage the resulting services while maintaining Service
Level Agreements (SLAs).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 32

To accomplish these targets, the associated challenges are stated as:

a) automating complex human-dependent decision-making processes (e.g. managing and optimizing network and
system configuration processes) by providing system and network intelligence tools and services;

b) determining which services need to be offered, and which of those services are in danger of not meeting their
Service-Level Agreements (SLAs), as a function of changing context;

c) determining how to avoid service performance degradation through analysis that leads to further automated
and intelligent operations;

d) defining how best to visualize how network services are provided and managed to improve network
maintenance and operation;

e) providing an experiential architecture (i.e. an architecture that uses Artificial Intelligence (AI) and other
mechanisms to improve its understanding of the environment, and hence the operator experience, over time);

f) improving operator's personnel efficiency through improved management and automation, while providing
increased visibility and a simplified interface between the operator and the networks and networked
applications; this reduces errors and makes human-directed commands more efficient and intuitive; and

g) improving infrastructure utilization and agility (response to real-time changes) while maintaining SLAs. The
deployed networks and systems likely need to be aware of the needs of Services and Applications, and handle
environmental changes in an automated way without human involvement.

4.3 Benefits of ENI
The ENI System defines a Functional Block architecture that helps address the seven challenges of clause 4.2. It
specifies Functional Blocks and Reference Points for providing a model-based, policy-driven, context-aware system
that provides recommendations and/or commands to Assisted Systems. This communication is to be done directly or
indirectly via a Designated Entity acting on the behalf of the Assisted System. A Designated Entity is an NMS, EMS,
controller, or current or future management and orchestration systems. The ENI System is expected to enable the
Assisted System to perform more accurate and efficient decision making.

The ENI System provides the following important benefits:

1) to measure and quantify the operation and performance of the resources and services of an operator;

2) to enable personalized services to be provided to customers;

3) to learn from the operation of the network, and decisions made by the operator;

4) to automate the operator's complex human-dependent decision-making processes by translating changing user
needs, business goals, and environmental conditions into closed-loop configuration and monitoring;

5) to enable the optimization and adjustment of resources and services managed by the operator, as well as
associated tools and applications needed by the operator to conduct business.

The ENI System is based on an experiential architecture. This means that it learns through experience (i.e. through the
operation of the systems that it assists in governing). This self-learning principle is key to improving operator
experience, and enables the system to evolve over time from proposing to implementing decisions.

The ENI architecture enables the operator to adjust the offering of services in response to contextual changes. It is
expected that an ENI System enables the deployment, administration, and control of migration toward new
technologies, such as SDN and NFV.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 33

4.4 High-Level Description of the ENI System Architecture

4.4.1 Overall Description

Carrier and Enterprise network architectures are becoming increasingly complex and diverse. For example, it is possible
to split a single application into separate distributed entities. As another example, managers, controllers, and
orchestrators are also being distributed, making their interaction critical. Furthermore, the network and applications use
new technologies and are programmed in diverse languages. Therefore, it is becoming more and more difficult to
realize potential and significant reductions in CapEx and OpEx. A primary goal of ENI is to provide a robust,
distributed platform that uses modelling, policy management, and AI to solve these problems.

The ENI System is an innovative, policy-based, model-driven functional architecture that improves operator experience.
In addition to network automation, the ENI System assists decision-making of humans as well as machines, to enable a
more maintainable and reliable system that provides context-aware services that more efficiently meet the needs of the
business. For example, the ENI System enables the network to change its behaviour (e.g. the set of services offered) in
accordance with changes in context, including business goals, environmental conditions, and the varying needs of
end-users.

This is achieved by using policy-driven closed control loops that use emerging technologies, such as big data analysis,
analytics, and artificial intelligence mechanisms, to adjust the configuration and monitoring of networks and networked
applications. It dynamically updates its acquired knowledge to understand the environment, including the needs of
end-users and the goals of the operator, by learning from actions taken under its direction as well as those from other
machines and humans (i.e. it is an experiential architecture). It also ensures that automated decisions taken by the ENI
System are correct and increase the reliability and stability, and lower the maintenance required, of the network and the
applications that it supports. It improves and simplifies the management of network services through their visualization,
and enables the discovery of otherwise hidden trends and interdependencies.

Finally, it helps determine which services are appropriate to be offered for a specific context, and which services are in
danger of not meeting their Service-Level Agreement (SLA), as a function of changing context. In order to achieve the
latter and to assist in monitoring and improving infrastructure efficiencies, it draws knowledge from telemetry shared
with it.

It is possible to use the ENI System to advise on balancing the resources or availability of the network elements or
function used to provide the services.

NOTE: The goal of the present document, at this stage in the industry evolution of AI/ML, is to ensure proper
management mechanisms are present in any control loop used within the ENI System. This enables the
ENI System or a human operator to manage the degree of autonomicity used within the control loop. This
applies to passive and active recommendations and commands (e.g. monitoring information and sending
reconfiguration commands), which in turn ensures the prevention of undesired outputs.

4.4.2 The Assisted System

4.4.2.1 Introduction

The system that the ENI System is providing recommendations and/or management commands to is referred to as the
"Assisted System". Within the current scope of ENI, there are three classes of Assisted Systems. In each case, an ENI
System requires data from the Assisted System. Changes to the Assisted System are not required for any class of
Assisted System in order to facilitate the use and rapid adoption of ENI.

The ENI System uses an API Broker to mediate between the ENI System and the Assisted System (regardless of its
class). This is because the ENI System and the Assisted System typically have different APIs. The API Broker defines
the correct way for one system to request services from the other system without requiring an ENI System to understand
the details of every API of every Assisted System that wants to communicate with it. All communication is done using
external Reference Points.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 34

The Assisted System and/or its Designated Entity do not have to accept the recommendations offered by an ENI System
when in recommendation mode. It is expected that the Assisted System and/or its Designated Entity accept the
recommendations and/or commands offered by an ENI System when in management mode. This includes those
decisions that apply to recommendations and commands, respectively, when the Assisted System is in a mixed mode of
operation. These different operational modes are defined in clause 4.4.3, and specified as requirements [MOP15] and
[MOP16] in clause 5.3.

4.4.2.2 Communication Options for All Classes of Assisted Systems

There are two common options for communication between an System ENI and the Assisted System. These two options
are shown in Figure 4-1.

1) In option 1, an ENI System communicates, using its API Broker, with the Operator or Designated Entity of the
Assisted System. Data ingestion by an ENI System (e.g. "telemetry data") and assistance in response from an
ENI System (e.g. "recommendations and commands") are communicated via the API Broker. This is shown in
Figure 4-1 by using the solid red line and solid blue line, respectively. All communication is defined by the
capabilities of the ENI API; hence, additional communication types not shown in Figure 4-1 are also possible.

2) In option 2, an ENI System preferentially communicates with the APIs of the Assisted System to conduct data
ingestion and assistance response. This is again shown in the figure by the combination of red line and blue
lines. All communication is defined by the capabilities of the ENI API. Hence, additional communication
types not shown in Figure 4-1 are also possible. Both communication alternatives in option 2 are able to be
used interchangeably.

 The dashed brown line in option 2 shows that there are two alternative communication options.

Both communication alternatives are able to be used interchangeably. For example, the API of the Assisted System
(e.g. the solid blue line) is used to implement some policy changes, while other policy changes are implemented by
communicating directly to the operator or Assisted System (e.g. the dashed brown line).

Figure 4-1: Two Common Communication Options of Classes of the Assisted System

For illustration purposes, in option 2, API translation is performed by the API Broker between a standard API provided
by ENI and the API of the Assisted System (or its Designated Entity) that is communicating with an ENI System. This
translation is external to the ENI System, because each Assisted System (or Designated Entity) typically has its own
unique API. It is desirable to insulate an ENI System from the specific details of the Assisted System, so that it does not
have to change with every change of APIs of the Assisted System. Thus, an API Broker is used, and functions as a
gateway between the constant standardized set of APIs provided by an ENI System and the varying set of APIs that are
particular to each individual Assisted System. Alternatively, the ENI System communicates with the Operator or
Designated Entity of the Assisted System using the API Broker in option 2.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 35

4.4.2.3 Class 1: An Assisted System that has No AI-based Capabilities

This type of Assisted System has no AI-based decision-making capabilities. Two options are shown in Figure 4-2.

Figure 4-2: Class 1: The Assisted System Has No AI Capabilities

This class of Assisted System has no AI capabilities, so an ENI System operates as an external system that
communicates with the Assisted System through standard Reference Points and APIs defined by ENI. In addition, most
Assisted Systems of this class were not designed to accommodate new internal modules, so ENI needs to be
incorporated as a discrete external system. The Assisted System and its Designated Entity are likely not able to use the
outputs of the ENI System to their full potential, due to their lack of having AI capabilities.

In this class of Assisted System, the ENI System is not involved in making decisions in the real-time control loop of the
Assisted System. The ENI System sends recommendations and/or management commands to improve decisions that do
not involve real-time configuration (e.g. change some statically defined parameters to improve resource utilization). The
burden is on ENI (and the API Broker, in the case of APIs) to present its results in a form that the Assisted System is
able to understand. Hence, nothing has to change in the Assisted System in order for ENI to be used.

4.4.2.4 Class 2: An Assisted System with AI that is Not in the Control Loop

This type of Assisted System has some AI-based decision-making capabilities. Two options are also possible as shown
in Figure 4-3.

Figure 4-3: Class 2: Assisted System with AI, but Not in the Control Loop

This class of Assisted System uses some AI-based algorithms, but critically, does not use AI in its internal control loop.
For example, optimization of the physical server location, virtual machine, and/or Container placement on a server, as
well as the geographic location of the server, is likely performed using an AI-algorithm by this class of Assisted
System. However, for this class of Assisted System, the ENI System is not involved in making decisions in the real-
time control loop of the Assisted System. The ENI System sends recommendations and/or management commands to
improve decisions that do not involve real-time configuration (e.g. as indicated above, change some statically defined
parameters to improve resource utilization). This class of system works as an extension of class 1.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 36

The architectural details of the Assisted System for class 2 systems are not visible to ENI. The two types of Functional
Blocks shown in Figure 4-2 (i.e. "AI Functional Blocks" and "Other Functional Blocks") are meant to illustrate the
separation of AI and non-AI Functional Blocks, and emphasize that AI Functional Blocks are not involved in real-time
operational decisions.

Again, as for Class 1, a Class 2 Assisted System is not designed to directly accommodate all of the features provided by
an ENI System. Hence, ENI operates as an external system that communicates with the Assisted System and/or its
Designated Entity, as shown in Figure 4-3. The burden is on ENI (and the API Broker, in the case of APIs) to present its
results in a form that the Assisted System and its Designated Entity are able to understand. Hence, nothing has to
change in the Assisted System, or its Designated Entity, in order for ENI to be used.

4.4.2.5 Class 3: An Assisted System with AI Capabilities in its Control Loop

4.4.2.5.1 Introduction

This type of Assisted System has AI-based decision-making capabilities as part of its internal control loop. Two options
are shown in Figure 4-4. Both of these options are shown using the API of the Assisted System. While this is not
mandated, the lack of API communication in a Class 3 system means that it cannot take advantage of real-time
operational changes from an ENI System and hence, will behave like a Class 2 system.

Figure 4-4: Class 3: Assisted System with AI in the Control Loop

This class of Assisted System optionally has other AI capabilities. The ENI System is involved in making decisions for
any function performed by the Assisted System, as long as it has permission to do so. Significantly, this includes
real-time decisions for this class of Assisted System. This is a fundamental difference between this class of Assisted
System and those of Classes 1 and 2.

4.4.2.5.2 Class 3 Options

4.4.2.5.2.1 Introduction

There are two different options for using an ENI System with the control loop(s) of class 3 Assisted Systems. The first
option (shown on the left of Figure 4-4) uses an ENI System as a modular addition that is able to directly affect the
control loop(s) of the Assisted System through API commands. The second option (shown on the right of Figure 4-4)
enables an ENI System to communicate its recommendations and commands to one or more Assisted Systems using a
communication mechanism that the set of Assisted Systems use. This alternative enables an ENI System to
communicate with distributed arrangements of collaborating Assisted Systems.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 37

4.4.2.5.2.2 Option 1 Feedback

Option 1 emphasizes two key points:

• An ENI System is only communicating with a single Assisted System (compared to option 2).

• The Assisted System has one or more closed control loops.

Since there is only a single Assisted System, ENI is concerned with managing and optimizing the performance of just a
single Assisted System.

An ENI System is not aware of the number or type of control loops that the Assisted System has. Two typical types of
control loops are shown in Option 1.

For informational purposes, the first type of control loop is to feedback information from the control loop to other
Functional Blocks; this enables the control loop to affect the behaviour of multiple Functional Blocks (regardless of
what type of task each Functional Block performs). The second type of control loop is to feedback information via the
API. This enables Functional Blocks that are in different administrative domains to participate in behavioural decisions
that are allowed by their containing administrative domain. This theoretically enables an ENI System to tap into the
control loop of the Assisted System. However, this is not appropriate for some real-time decisions due to the
communication and security constraints of using an API [2]. For example, a delay in communication caused by using
the API (versus, for example, remote method invocation or other types of communication), as well as additional time
required to secure the communication between two entities that are not co-located, is likely not going to be acceptable
in certain scenarios.

4.4.2.5.2.3 Option 2 Communication

Option 2 emphasizes two key points:

• ENI is communicating with multiple Assisted Systems (compared to option 1).

• For some scenarios, ENI does not have to be aware that it is communicating with a particular Assisted System,
whereas in other scenarios, it does.

In one set of scenarios, an ENI System does not differentiate between Assisted Systems. This is common for
collaborative scenarios in which each Assisted System has the same capabilities and responsibilities. An ENI System
registers or otherwise logs that it is communicating with specific Assisted Systems, as long as it is either
communicating with them directly or is told that a particular Assisted System is communicating with it. For example,
this may be necessary if a given Assisted System is acting as a Controller, and other Assisted Systems are dependent on
the decisions of it. Another example is a peer-to-peer architecture. In a different set of scenarios, an ENI System needs
to be aware of a specific Assisted System, since the set of Assisted Systems do not have the same capabilities and
responsibilities.

4.4.2.5.2.4 Working as an External Discrete System

In both Class 3 alternatives, an ENI System also works as its own discrete system external to the Assisted System, as
shown in Figure 4-4. However, most Assisted Systems of this class were not designed to accommodate new internal
modules, so ENI needs to be incorporated as a discrete external system. The burden is on ENI (and the API Broker, in
the case of APIs) to present its results in a form that the Assisted System (or its Designated Entity) are able to
understand. Hence, nothing has to change in the Assisted System, or in its Designated Entity, in order for ENI to be
used.

4.4.2.6 Summary of Interaction between the Assisted System and ENI

In each of the above classes of Assisted System, the ENI System interacts with either the Assisted System directly, or
with the Designated Entity of the Assisted System. The Assisted System does not need to know if it is communicating
with the ENI System or with the operator, an EMS, an NMS, or a controller. The point is to reduce the barrier of
adoption for using an ENI System by not requiring new APIs from the Assisted System to interact with the ENI System.
The use of an API Broker insulates the ENI System from having to know what entity it is specifically communicating
with.

Common Features are shown in Table 4-1.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 38

Table 4-1: Common Characteristics and Behaviour of Assisted Systems

Feature Class 1 Assisted System Class 2 Assisted System Class 3 Assisted System
Assisted System
Need to Change to
Use ENI?

NO NO NO

AI Capabilities of
Assisted System NONE

Only in non-real-time decision
making

Real- or non-real-time
decision making

Scope of Assisted
System APIs

None in Option 1, limited to
non-AI functionality in Option 2

None in Option 1, limited to
non-AI functionality in Option 2

Real- or non-real-time
decision making

Communication
Types

Option 1: through Operator or
Designated Entity;
Option 2: through APIs

Option 1: through Operator or
Designated Entity;
Option 2: through APIs

Option 1: communication
with a single Assisted
System using APIs;
Option 2: communication
with one or more Assisted
Systems using APIs

ENI Operation as an
External System to
Assisted System

YES; embedding is not an
option (see clause 6.2.3.1)

YES; embedding is not an
option

YES; embedding is not an
option

Directly Affect
Control Loop? NO NO YES

ENI is able to interact
with modules of
Assisted System

NO NO YES, as defined by the
Assisted System

4.4.3 Communication and Interaction with Other External Systems

All standardized communication between the ENI System and the Assisted System (or its Designated Entity) uses
External Reference Points, which are defined in clause 7 of the present document. The ENI System is defined as a set of
Functional Blocks (see clause 6.3 and ETSI GR ENI 016 [i.35], clause 4.2). Functional Blocks define a recursive
mechanism to represent functionality with well-defined inputs and outputs; if these inputs and/or outputs are meant to
be interoperable, then they are defined as Reference Points. An External Reference Point (see clauses 4.4.6.1, 7.2 and
7.3) is a Reference Point between an ENI System Functional Block and an external system, whereas an Internal
Reference Point (see clauses 4.4.6.2, 7.6 and 7.7) is a Reference Point between different ENI System Functional Blocks.

4.4.4 Mode of Operation

4.4.4.1 Allowed Modes of Operation

The ENI System operates in two different modes, called "recommendation mode" and "management mode".

The operation of the ENI System in recommendation mode is analogous to that of a Recommender system - it provides
recommendations to the Assisted System. In contrast, when the ENI System is operating in management mode, the ENI
System provides decisions and commands to be implemented by the Assisted System. These decisions and commands
are subject to the approval of the Assisted System (or its Designated Entity).

The ENI System supports a recommendation mode and optionally supports a management mode of operation. A mixed
mode of operation (i.e. the combination of recommendation and management modes) for different sets of decisions is
also optionally supported. Both modes may be used with the same Assisted System. For example, if the Designated
Entity of the Assisted System decides that recommendations belonging to a particular category have been verified, it
then changes decisions for that category to operate in management mode; this is done independently of other categories,
so that other operations stay in recommendation mode.

4.4.4.2 Setting the Mode of Operation

The ENI System initially sets the mode of operation. In order to do that, the ENI System selects its mode of operation
based on the capabilities of the Assisted System (see [7] for a definition of capabilities from the MEF Core Model),
along with other applicable information (e.g. regulatory policies, status of the infrastructure, and goals input by the
operator) in a given context or situation. All standardized communication between the ENI System and the Assisted
System is through Reference Points defined in the present document (see clause 4.4.6).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 39

The ENI System optionally has a default mode of operation that is used when:

1) the ENI System is initialized; and/or

2) a class of decisions is reached that is not specified by the Assisted System.

For example, suppose the user has specified how to handle best effort traffic, but not how to handle prioritized service
class traffic. In this example, if the ENI System has defined defaults that are appropriate to each service class, then best
effort traffic is handled as specified by the user, while prioritized traffic is handled by the default specified by the ENI
System. The default mode of operation is optionally changed as desired by either the Assisted System or its Designated
Entity.

4.4.4.3 Interaction with the Assisted System

All communication regarding mode of operation change(s) is done using a request-reply interaction paradigm over an
appropriate External Reference Point defined in the present document. This paradigm applies to any entity that requests
a change (e.g. the User, the Designated Entity of the Assisted System, or an agent ([i.7] and [i.8]) acting on behalf of
these).

In any mode of operation, the ENI System interacts with the data, control, management, and/or orchestration planes of
the Assisted System, underlying infrastructure, and network. That interaction requires the Assisted System to expose
new data for analysis by the ENI System; this is communicated as requests to change the configuration of the affected
components, devices, and/or systems.

4.4.4.4 Selecting a Mode of Operation for a Class of Decisions

The Designated Entity of the Assisted System optionally selects a desired mode of operation for a class of decisions to
the ENI System.

Alternatively, since the ENI System is an intelligent system, the ENI System optionally suggests that a particular mode
of operation is used for a set of decisions that the Assisted System (or the Designated Entity on its behalf) has not
specified or envisaged. In this case, the Assisted System needs to approve that it accepts ENI recommendations and/or
management commands, as appropriate. These decision classes may be described by a set of capabilities (e.g. metadata)
advertised by ENI.

4.4.4.5 Communication of Mode of Operation

Communication is done by the Designated Entity of the Assisted System, which by definition is a trust anchor [2] (a
type of trusted entity). This means that the ENI System and the Designated Entity of the Assisted System collectively
operate as expected, according to design and policy, despite environmental disruption, human user and operator errors,
and attacks by hostile parties. In addition, in either mode of operation, this behaviour is validated by each entity before
application.

4.4.4.6 Normal Operation of the Selected Mode of Operation

4.4.4.6.1 Overview

The ENI System notifies the Assisted System (or its Designated Entity) when it wants to change the mode of operation
for a particular decision. It does so by sending a request to the Assisted System (or its Designated Entity) using an
appropriate External Reference Point. These two options are described in clauses 4.4.4.6.2 and 4.4.4.6.3, respectively. If
this mode of operation is not supported by the Assisted System for this decision, then the Assisted System (or its
Designated Entity) informs the ENI System that this is not allowed. If this operation is supported by the Assisted
System, then the Assisted System analyses the proposed change to determine if it is acceptable. If it is not, then
optionally, negotiation is then initiated by either the Assisted System or the ENI System. Once agreed, the Assisted
System (or its Designated Entity) informs the ENI System that the change is allowed. The ENI System operates the
same way in either mode of operation; the difference is the set of outputs (information, recommendations, and
commands) generated by the ENI System that are sent to the Assisted System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 40

All standardized communication with an ENI System is done using the External Reference Points specified in the
present document. If an Assisted System is not capable of supporting some or all of these ENI External Reference
Points, a possible solution is to use an API Broker to mediate between an ENI System and the Assisted System (or its
Designated Entity) as described above.

A precondition of the entity requesting a change in the mode of operation is that it is a trusted entity (see requirements
[MOP11] and [MOP12] in clause 5.3). The Designated Entity of the Assisted System chooses to either trust all
decisions to be made, or to only trust decisions for a particular set of functions belonging to a particular category.

Ultimately, the Designated Entity of the Assisted System has the final decision regarding what mode of operation is
used for any (and all) decisions. Conceptually, there is no difference between switching from recommendation to
management mode or vice-versa. There are two cases to be considered, depending on which entity the ENI System
communicates with, as detailed below.

4.4.4.6.2 Case 1: ENI Indirectly Instructs the Assisted System to Switch Modes

This case assumes that the Assisted System is not able to decide on its own whether it is able to switch modes, and
always defers this decision to its Designated Entity. Hence, the ENI System communicates directly with the Designated
Entity of the Assisted System, which in turn instructs the Assisted System to switch modes.

4.4.4.6.3 Case 2: ENI Directly Instructs the Assisted System to Switch Modes

This case assumes that the Assisted System decides on its own whether it is able to switch modes. Hence, the ENI
System communicates directly with its Designated Entity; either the Assisted System or its Designated Entity informs
its manager (either network manager or orchestrator) that it has switched modes.

4.4.4.7 Normal Operation of the Selected Mode of Operation

The default configuration of the ENI System is to start in recommendation mode when first booted. This mode of
operation is defined for all types of decisions, since the ENI System has not been able to learn about its environment,
services and resources that it is managing, as well as the preferences of the operator.

After booting, the ENI System then queries the Designated Entity of the Assisted System to determine the set of
capabilities the Assisted System has, which Reference Points are defined, and what additional information and
requirements (e.g. regulatory policies) are appropriate to be used. Given these initial inputs, the ENI System then asks
the Designated Entity of the Assisted System if there are any types of decisions that it would like assistance with:

• If not, the ENI System is limited to passively learning through observing the actions of the Designated Entity
of the Assisted System, and their effect on the infrastructure, as shared with the ENI System through
information provided on the external Reference Points of an ENI System.

• If so, then the ENI System asks which mode of operation is desired for each class of decision.

For both cases, the ENI System will also ask if the Designated Entity would like to subscribe to notifications.

The Designated Entity of the Assisted System optionally defines a preferred mode for the ENI System to operate in for
a given class of decisions. An ENI System acknowledges each such request, and also confirms when the requested
mode of operation is ready to be used for each class of decisions.

Operation then continues with the ENI System learning through observation, except that the ENI System provides
recommendations and/or commands based on the selected mode of operation for each decision defined above.

The ENI System notifies the Assisted System (or its Designated Entity) when it wants to change the mode of operation
for a particular decision. If this mode of operation is not supported by the Assisted System for this decision, then the
Assisted System (or its Designated Entity) informs the ENI System that this is not allowed. If this operation is
supported by the Assisted System, then the Assisted System analyses the proposed change to determine if it is
acceptable. If it is not, then optionally, negotiation is initiated by either the Assisted System or the ENI System. Once
agreed, the Assisted System (or its Designated Entity) informs the ENI System that the change is allowed.

If the ENI System requires data that is not being monitored, it asks the Designated Entity of the Assisted System to
change its configuration to report those data. The configuration change is required to enable data that are not currently
being monitored to be made available to the ENI System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 41

4.4.4.8 Exception Handling for the Selected Mode of Operation

An exception is raised any time that:

1) a request or a response from either the Assisted System or an ENI System is not delivered; or

2) an ENI System is not able to change the mode of operation as requested.

4.4.5 Functional Concepts

4.4.5.1 Functional Concepts for Modular System Operation

NOTE: Clauses 4.4.5.1 to 4.4.5.9.2.3 are moved from the present document to a new document, titled "Functional
Concepts for Modular System Operation" (ETSI GR ENI 016 [i.35]).

4.4.5.2 Overview of Prominent Control Loop Architectures

NOTE: This clause (previously clause 4.4.5.10) is moved from the present document to a new document, titled
"Overview of Prominent Control Loop Architectures" (ETSI GR ENI 017 [i.36]).

4.4.6 ENI Reference Points

4.4.6.1 Definition of an ENI Reference Point

An ENI Reference Point is the logical point of interaction between specific Functional Blocks. Each Reference Point
defines a set of related interfaces that specify how the Functional Blocks communicate and interact with each other.

4.4.6.2 Definition of an ENI External Reference Point

An ENI External Reference Point is a Reference Point that is used to communicate between an ENI Functional Block
and an external Functional Block of an external system (e.g. a Functional Block of the OSS, BSS, or Assisted System).

4.4.6.3 Definition of an ENI Internal Reference Point

An ENI Internal Reference Point is a Reference Point that is used to communicate between two or more Functional
Blocks that belong to the ENI System. This communication stays within an ENI System, and is not seen by systems that
are external to an ENI System.

4.4.7 ENI Interfaces

4.4.7.1 Definition of an ENI Interface

An Interface is a point across which two or more components exchange information. An interface describes the public
characteristics and behaviour that specify a contract for performing a service. In an ENI System, there are three types of
Interfaces:

1) hardware interfaces;

2) software interfaces; and

3) application programming interfaces.

ENI Interfaces exist at defined External and Internal Reference Points (see clause 7 of the present document). ENI
Reference Points differentiate between "consumer" and "producer" by separating data, control, management, and other
specific types of communication information from being communicated on the same interface. See clause 7.1 of the
present document for further details.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 42

4.4.7.2 Definition of an ENI Hardware Interface

An ENI Hardware Interface is a point across which electrical, mechanical, and/or optical signals are conveyed from a
sender to one or more receivers using one or more protocols. A Hardware Interface decouples the hardware
implementation from other Functional Blocks in a system.

4.4.7.3 Definition of an ENI Software Interface

An ENI Software Interface defines a point through which communication with a set of resources (e.g. memory or CPU)
of a set of objects is performed. This decouples the implementation of a software function from the rest of the system.

4.4.7.4 Definition of an ENI Application Programming Interface

An API is a set of communication mechanisms through which a developer constructs a computer program. It consists of
tools, object methods, and other elements of a model and/or code. APIs simplify producing programs, since they
abstract the underlying implementation and only expose the objects, and the characteristics and behaviour of those
objects that are needed.

4.4.7.5 Comparison of ENI Software Interfaces with ENI APIs

An ENI Software Interface is a managed logical entity that supports communication of data, information, and/or
knowledge. In contrast, an ENI API uses one or more ENI Software Interfaces to provide external access for developers
to write programs to interact with ENI.

4.4.7.6 Interaction between ENI Hardware and Software Interfaces

Simplistically, software contains instructions that tells hardware modules what functionality is needed. Hardware
interfaces include plugs, sockets, cables and set of electrical, optical, and/or logical signals traveling between the
entities that it connects, along with the protocol(s) used. In contrast, Software interfaces perform programming
functions. They can be used to communicate with hardware and other software modules. ENI does not specify a
hardware-software interface except for those interfaces that support ENI APIs.

4.4.7.7 Interaction between ENI Hardware and Software APIs

An API sometimes reflects the language that it is meant to be used with. For example, an API for an object-oriented
language would provide a specification for creating, editing, deleting, and manipulating classes. Other types of APIs
provide specifications at different abstraction levels (e.g. for create, read, update, or delete operations) that are
dependent on the object that they are being applied to. For example, a "service-orientated" API could apply operations
such as the previous four to a service, while a "resource-orientated" API would do the same thing to resources. Note that
if appropriate abstractions are used all of these examples are independent of hardware and software entities. ENI APIs
operate through either an External or an Internal Reference Point, and are specified in clause 7.4.

4.5 Functional Architecture

4.5.1 Functional Block Diagram of the ENI System

A high-level Functional Block diagram that includes the use of an API Broker is shown in Figure 4-5 (for inputs to an
ENI System) and Figure 4-6 (for outputs from an ENI System). This is a simplified view of the main processing
components of an ENI System. It is important to realize that a linear flow from input to output is not prescribed, and
does not have to actually occur. This is explained in the following clauses, and elaborated further in clause 6. The
arrows in Figure 4-5 and Figure 4-6 represent the directionality of data and information using any of the eighteen
External Reference Points defined in clause 7.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 43

Figure 4-5: High-Level Functional Architecture of ENI When an API Broker Is Used

A high-level Functional Block diagram that includes the use of an API Broker is shown in Figure 4-5 (for inputs to an
ENI System) and Figure 4-6 (for outputs from an ENI System). This is a simplified view of the main processing
components of an ENI System. It is important to realize that a linear flow from input to output is not prescribed, and
does not have to actually occur. This is explained in the following clauses, and elaborated further in clause 6. The
arrows in Figure 4-5 and Figure 4-6 represent the directionality of data and information using any of the eighteen
External Reference Points defined in clause 7.

Figure 4-6: High-Level Functional Architecture of ENI When an API Broker is Not Used

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 44

The purpose of the API Broker is to serve as a gateway (i.e. translation mechanism) between different systems. There is
currently no dedicated Functional Block to translate between the APIs and data formats used external to the ENI System
and the APIs and data formats used internally by the ENI System. Specifically, the Input Processing and Normalization
group of Functional Blocks assumes that the input from the Assisted System has been translated to a form that it can
understand. This is because there are significant differences in the format and language used by vendors for both
telemetry information as well as APIs. Similarly, the Denormalization and Output Generation group of Functional
Blocks assumes that, due to the above heterogeneity in APIs and commands, another entity will perform the translation
from ENI format to the Assisted System's Native format. Therefore, without the API Broker, it is possible that the ENI
System is not able to communicate directly to external systems (in this case, the Assisted System and its Designated
Entity, Applications, Users, and the Infrastructure).

The ENI System functional architecture consists of three types of Functional Blocks:

1) One or more Functional Blocks for ingesting and normalizing data.

2) One or more Functional Blocks for denormalizing and generating recommendations and/or commands.

3) One or more Functional Blocks for analysing ingested data, determining if the Assisted System is operating as
expected, and if not, providing a set of recommendations and/or commands.

A key assumption is that the ENI System functionality evolves over time. It is anticipated that the capabilities of various
Functional Blocks also evolve over time. As human operators gain confidence in automated decision-making, it is likely
that ENI Functional Blocks operate with different and increased levels of autonomicity. Therefore, no attempt is made
to standardize the interaction among internal blocks.

Figures 4-5 and 4-6 define the main Functional Blocks of the ENI System. Different use cases (refer to ETSI
GS ENI 001 [3]) are realized by different flows through the above Functional Blocks, where any Functional Block is
visited zero or more times.

ENI is a system that functions in two different modes, as described in clause 4.4.3. Both modes are depicted by showing
the interaction of an ENI System as a separate system that gets data from, and provides information (including
recommendations and/or commands) to the Assisted System (or its Designated Entity); the difference between the
modes is whether commands are provided to the Assisted System (or its Designated Entity) or not. The ENI System
itself consists of three or more Functional Blocks; these perform input processing, analysis, and output processing,
respectively. An overview of these functions is described in the following clauses; see clause 5.3 for normative
descriptions and requirements.

An ENI System operates in recommendation or command mode, or a combination of these.

NOTE: Any Functional Block (except the Data Ingestion, Normalization, Denormalization, and Output
Generation Functional Blocks) is allowed to simultaneously operate in recommendation and/or command
mode. However, this is not externally observable by the Assisted System (or its Designated Entity).

4.5.2 API Broker

4.5.2.1 Introduction

An API is a set of communication protocols, code, and tools that enable one set of software components to interact with
either a human or a different set of software components. APIs are critical for platform and ecosystem development.
[i.26] discusses this point, and says that API programs enable organisations to build a platform and associated
ecosystem for digital transformation.

In general, each product has its own API. An API Broker is software that mediates between two systems with different
APIs, enabling the two different systems to communicate transparently with each other. There are many benefits of
using API Brokers, including error reduction via software transmitting data instead of humans and business process
automation through automated transfer of data between applications. API Brokers also enable custom applications that
integrate different application data.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 45

4.5.2.2 Definition of the ENI API Broker

The ENI API Broker is used to translate between the ENI APIs and APIs of the Assisted System and its Designated
Entity. More specifically, the ENI API Broker ingests APIs through an appropriate ENI External Reference Point,
analyses the API, and then routes the functionality of the ingested API to an appropriate ENI Functional Block (this is
typically the Data Ingestion Functional Block, but may be a different Functional Block if the API is known to an ENI
System). This is discussed more in clause 6.4.

4.5.2.3 Use of an API Broker in ENI

One purpose of the API Broker is to decouple the ENI System from other external systems that it communicates with.
In general, each Assisted System has its own unique functionality and set of APIs. This implies that the ENI System
would have to understand each of these different sets of APIs in order to communicate with them. This is not desirable,
and makes the building of an ENI System very complex. Instead, the present document defines an API Broker to aid in
the translation between external systems and the ENI System. This enables the ENI System to define a single set of
APIs. Therefore, the purpose of the API Broker is to:

1) translate data communicated from the Assisted System (or its Designated Entity) into a normalized form that
all ENI Functional Blocks are able to understand; and

2) translate recommendations and commands from the normalized form used in an ENI System to a form that the
Assisted System (or its Designated Entity) is able to understand.

Another purpose of the API Broker is to manage APIs. This includes the authentication and authorization of the entities
that want to communicate using ENI APIs (e.g. between the ENI System and third-party applications, and vice-versa).

4.5.2.4 Alternatives to Using an API Broker

There is no alternative to using an API Broker. This is because an ENI System is designed to be used by a variety of
existing and future systems that each can have their own unique APIs. The alternative of embedding API plug-ins for
each targeted Assisted System directly in an ENI Functional Block (e.g. the Data Ingestion and Output Generation
Functional Blocks) does not scale, and directly impedes the continued development of ENI. Rather, an extensible API
Broker that itself has plug-ins for different targeted Assisted Systems, as well as generic API capabilities, is a preferred
approach. It also enables API composition, which is discussed further in clause 6.4.

4.5.3 ENI System Functional Blocks

4.5.3.1 Introduction

The ENI System shown in Figures 4-5 and 4-6 has three types of Functional Blocks. They are:

• Input Processing.

• Analysis, which includes Knowledge Management, Context Aware Management, Cognition Management,
Situation-Aware Management, Model-driven, Policy Management.

• Output Generation.

Different types of decision-making strategies that apply to all three types of ENI System Functional Blocks are
described in clause 4.5.4.

4.5.3.2 Input Processing

4.5.3.2.1 Overview

Input processing consists of two Functional Blocks: the Data Ingestion and the Normalization Functional Blocks. All
external data enters the Data Ingestion Functional Block. It is possible to combine the functionality of the Data
Ingestion and Normalization Functional Blocks into a single Functional Block if desired.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 46

4.5.3.2.2 Data Ingestion Functional Block

The purpose of the Data Ingestion Functional Block is to collect data from multiple input sources and implement
common data processing techniques to enable ingested data to be further processed and analysed by other ENI
Functional Blocks.

Data used by the Functional Blocks in an ENI System typically comes from different sources, is created using different
applications and programming languages, and typically is ingested using different protocols. Data is produced by
different entities, layers, and domains of the Assisted System (or its Designated Entity), and communicated to the API
Broker of ENI via the exposed External Reference Points and/or APIs of the Assisted System (or its Designated Entity).

The API Broker may assist in parsing and possibly translating communicated data into a format defined by the
Knowledge Management Functional Block.

It is possible to combine this Functional Block with the Normalization Functional Block if desired.

4.5.3.2.3 Normalization Functional Block

The purpose of the Normalization Functional Block is to process and translate data received from the Data Ingestion
Functional Block into a form that other ENI Functional Blocks are able to understand and use. This enables the data
used by the Functional Blocks in an ENI System to be interpreted and understood in a unified and consistent manner;
this facilitates the reuse of these Functional Blocks, enables the modularization and generalization of the design of the
other Functional Blocks, and supports vendor neutrality. The normalization optionally includes pre- and/or
post-processing of the data from different domains. The normalized data is then passed to other Functional Blocks in the
ENI System for further processing.

Different data models are likely to be used by different ENI Functional Blocks. Each such data model typically uses
different data structures, objects, and protocols to represent its concepts. It is possible for the same concept to be
represented differently in different data models (e.g. customer data in a Lightweight Directory Access Protocol (LDAP)
or electronic Directory Service (Recommendation ITU-T 9594-1 [i.13] and Recommendation ITU-T 9594-7 [i.14]) vs.
the same customer data in a Relational Database Management System (RDBMS)). This is addressed by ensuring that
each data model is derived from a single information model, which facilitates reconciling these different representations
of the same concept into a single object.

It is possible to combine this Functional Block with the Data Ingestion Functional Block if desired.

4.5.3.3 Analysis

4.5.3.3.1 Knowledge Management and Processing

4.5.3.3.1.1 Overview

Knowledge Management and Processing consists of three Functional Blocks: Knowledge Management, Context-Aware
Management, and Cognition Management Functional Blocks. It is possible to combine the functionality of these three
Functional Blocks into a single Functional Block if desired.

4.5.3.3.1.2 Cognition Model

Cognition is defined as "the process of understanding data and information and producing new data, information, and
knowledge". A cognition model defines how cognitive processes, such as comprehension, action, and prediction, are
performed and influence decisions. This is how, for example, behaviour is recognized.

A cognition model enables a cognitive system to reason about what actions to take in a methodological and structured
manner. It can learn from its experience to improve its performance. It can also examine its own capabilities and
prioritize the use of its services and resources, and if necessary, explain what it did and accept external commands to
perform necessary actions. This includes:

1) revising (i.e. correcting) existing knowledge;

2) acquiring and encoding new knowledge from instruction or experience; and

3) combining existing components to infer and deduce new knowledge.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 47

4.5.3.3.1.3 Knowledge Management Functional Block

The purpose of the Knowledge Management Functional Block is to represent information about both the ENI System as
well as the system being managed. This includes differentiating between known facts, axioms, and inferences. There are
many examples of knowledge representation formalisms, ranging in complexity from models and ontologies to
semantic nets and automated reasoning subsystems [66]. It is likely that the ENI System Architecture relies heavily on
logic-based as well as various inferencing mechanisms. A more complete and formal definition of knowledge
representation is defined in clause 3.1. This Functional Block is used by all other Functional Blocks of the ENI System.

4.5.3.3.1.4 Context Aware Management Functional Block

The purpose of the Context-Aware Management Functional Block is to describe the state and environment in which a
set of entities in the Assisted System (i.e. system being assisted and/or governed) exists or has existed. Context-aware
management is used to continuously update the context in which decisions are made.

Context consists of measured and inferred knowledge, and typically changes over time. For example, it is possible that a
company has a business rule that prevents any user from accessing the code server unless that user is connected using
the company intranet. This business rule is context-dependent, and the system is required to detect the type of
connection of a user, and adjust access privileges of that user dynamically.

A more complete and formal definition of context, and how it is used in management, is defined in [i.1], [i.2] and [i.3].

4.5.3.3.1.5 Cognition Management Functional Block

For the purposes of the present document, cognition is defined in clause 3.1 as the "process of understanding data and
information and producing new data, information, and knowledge".

The purpose of the Cognition Management Functional Block is to enable the ENI System to understand normalized
ingested data and information, as well as the context that defines how those data were produced; once that
understanding is achieved, the Cognition Management Functional Block then evaluates the meaning of the data, and
determines if any actions need to be taken to ensure that the goals and objectives of the system are met. This includes
improving or optimizing performance, reliability, and/or availability. These metrics are exemplary - it is possible to use
any other metric used for evaluation of the ENI and/or the Assisted System. The Cognition Management Functional
Block mimics some of the processes involved in human decision-making to better comprehend the relevance and
meaning of ingested data.

4.5.3.4 Situation-based, Model-driven, Policy Generation

4.5.3.4.1 Overview

Situation-based Policy Generation Functional Block consists of three Functional Blocks:

• Situation Awareness;

• Model-Driven Engineering; and

• Policy Management Functional Blocks.

4.5.3.4.2 Situation Awareness Functional Block

The purpose of the Situation Awareness Functional Block is to enable the ENI System to be aware of events and
behaviour that are relevant to a set of entities in the environment of the Assisted System (i.e. system being assisted
and/or governed). This includes the ability to understand how information, events, and recommended commands given
by the ENI System impact the management and operational goals and behaviour, both immediately and in the near
future. Situation awareness is especially important in environments where the information flow is high, and poor
decisions have the possibility to lead to serious consequences (e.g. violation of SLAs). A thorough introduction to
situation awareness is defined in [i.4].

4.5.3.4.3 Model Driven Engineering Functional Block

The purpose of the Model Driven Engineering Functional Block is to use a set of domain models that collectively
abstract all important concepts for managing the behaviour of objects in the system(s) governed by the ENI System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 48

The use of reusable models defines a set of concepts that are shared by all constituencies that use them. It is permissible
for a given constituency to use them directly or indirectly; examples of these are an application developer and a
business user, respectively. It maximizes productivity by defining common definitions and usage of concepts used by
different entities, including Functional Blocks and systems.

A model is made reusable through the use of common elements that are arranged in similar patterns, or templates. This
practice is called design patterns, and occurs at multiple levels of abstraction. ENI is principally concerned with the use
of software design patterns and architecture design patterns. A software design pattern is a general, reusable solution in
a given context to a commonly occurring problem in the design of a software system. It is not a finished design that is
able to be transformed directly into code; rather, it describes how to build the elements of a solution to a type of
problem that commonly occurs in designing software. It typically shows concepts and interactions between those
concepts; these are translated into classes, attributes, operations, and relationships. An architectural design pattern is
similar to a software design pattern, but has a broader scope. It is not an architecture and not even a finished design;
rather, it describes how to build the elements of a solution to a type of architecture problem that commonly occurs.

Model Driven Engineering is a software development and implementation methodology that creates reusable domain
models, which are conceptual models of concepts, including how concepts relate to each other, which are important to
the system being managed. It simplifies the design and implementation processes, and promotes a common
understanding of terminology and concepts of the system by different teams working on the system. Put another way, a
set of domain models abstract the concepts and activities to be managed. The MDE approach is meant to increase
productivity by maximizing compatibility between Functional Blocks and systems through the reuse of standardized
models.

A domain is modelled using existing and new design patterns wherever possible.

4.5.3.4.4 Policy Management Functional Block

The purpose of the Policy Management Functional Block is to provide decisions to ensure that the system goals and
objectives are met (see clause 6.3.9 for more information on how decisions are made). Policies are used to provide
scalable and consistent decision-making. Policies are generated from data and information received by the Knowledge
Management and Processing set of Functional Blocks. Formally, according to [i.4], the definition of policy is:

 "Policy is a set of rules that is used to manage and control the changing and/or maintaining of the state of one
or more managed objects", see also [7], [8] and [i.1].

Policies may be used in several ways in an ENI System:

• Policies are defined by an ENI System for managing, monitoring, controlling, and orchestrating behaviour of
Functional Blocks in the Assisted System.

• Policies are defined by an ENI System to request changes in the Assisted System (e.g. for monitoring a new
output).

• Policies that are input to an ENI System by an external entity (e.g. end-user or application) are subject to
verification by the ENI System (e.g. they need to pass a parsing or compilation stage with no errors or
warnings produced).

In each case, policies may represent goals, recommendations, or commands. Typically, any information to be conveyed
to the Assisted System or its Designated Entity take the form of a set of policies. Each set of policies may be made up of
one or more imperative, declarative, and/or intent policy. The details of policy definition, generation, and processing are
defined in clause 6.3.9.

4.5.3.5 Output Generation

4.5.3.5.1 Overview

Output Generation consists of two Functional Blocks: Denormalization and Output Generation Functional Blocks. It is
permissible that the functionality of these two Functional Blocks is combined into a single Functional Block if desired.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 49

4.5.3.5.2 Denormalization Functional Block

The purpose of the Denormalization Functional Block is to process and translate data received from other Functional
Blocks of the ENI System into a form that facilitates subsequent translation to a form that a set of targeted entities are
able to understand. For example, different data models are likely to be used by different ENI Functional Blocks. Each
such data model typically uses different data structures, objects, and protocols to represent its concepts. It is possible to
represent the same concept differently in different data models (e.g. customer data in an LDAP or X.500 directory vs.
the same customer data in an RDBMS). This is addressed by ensuring that each data model is derived from a single
information model, which facilitates reconciling these different representations of the same concept into a single object.

The Denormalization Functional Block receives policies, recommendations, and/or commands. The Denormalization
also optionally includes pre- and/or post-processing of the data from different domains to facilitate the translation of
these data for a targeted set of entities. The denormalized data is then passed to the Output Generation Functional Block
for further processing.

It is possible to combine this Functional Block with the Output Generation Functional Block if desired.

4.5.3.5.3 Output Generation Functional Block

The purpose of the Output Generation Functional Block is to convert data received by the Denormalization Functional
Block into a form that the Assisted System (or its Designated Entity) is able to understand. This includes defining an
appropriate set of protocols, changing the encoding of the data, and other related functions.

It is possible to combine this Functional Block with the Denormalization Functional Block if desired.

4.5.4 Decision-Making

4.5.4.1 Overview

Decision-making is the cognitive process of selecting a course of action from several possible alternative actions based
on the information available and the preferences of the decision maker. Every decision-making process produces a final
choice. The final choice does not have to be implemented immediately; this depends on the situation that the decision is
made in.

The ENI architecture is specifically designed to provide collaborative interaction of each Functional Block. This
enables the domain-specific functionality of each Functional Block to be reused by other Functional Blocks. This avoids
having to build too much processing functionality in any one particular Functional Block, and more importantly,
implementing the same function differently in different Functional Blocks. The ENI architecture combines localized
and domain-specific knowledge to develop higher-level, global decisions.

The following clauses describe the progression of decision-making envisioned by the ENI System, from hindsight to
reactive to predictive to (full) cognitive processing.

4.5.4.2 Decision-Making using Hindsight

Hindsight is defined as the "realization of the significance and nature of data and events after they have occurred". This
realization is typically based on understanding, which in turn requires data, information, and knowledge; wisdom is of
course very helpful and needed for all but simple and straightforward (i.e. easy to understand) occurrences. This type of
decision-making dominated early management systems until more functionality was available.

4.5.4.3 Decision-Making using Deterministic Processing

Deterministic processing is a step beyond hindsight. Deterministic processing recognizes the occurrence of significant
events and data, and invokes predefined rules, processes, and/or policies in response to correct behaviour. A simple
example is an expert system, which defines rules to handle different inputs. This type of system responds very quickly
and accurately to some events, because the input matches one or more rules that already exist. However, if an input does
not match any rule, then this type of system has a problem - it has no choice to give, and no extensible way to make a
decision. It has to wait for a new rule.

Put another way, this type of system reacts to past events, and cannot predict future behaviour. However, it represents a
significant improvement over hindsight, which is only able to make a decision after the fact.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 50

4.5.4.4 Decision-Making using Predictive Processing

Predictive processing uses a set of processes to predict, or estimate the likelihood of, a future event, state, or behaviour.
The prediction or estimation is based on analysing current and historical facts in order to identify risks and opportunities
to improve the likelihood of the prediction. Predictive processing also typically allows probability and/or risk
assessment. Predictive models often perform calculations during transactions in order to estimate the risk or opportunity
involved with making a decision; the actual decision is implemented by the predictive processing entity or some other
entity.

4.5.4.5 Decision-Making using Cognitive Processing

A cognitive processing system uses cognition (see clause 6.3.6) to prove or disprove a hypothesis about how to correct
an undesirable state in the system. Cognitive processing requires the tight integration of different mechanisms
(e.g. knowledge, short- and long-term memory, perception, planning, and reasoning) that together understand what has
happened and plan a corrective set of actions. This tight integration is in contrast to modern software architectures that
emphasize loose coupling of Functional Blocks.

There is a significant difference between machine learning and cognitive processing. Some examples include:

• Machine Learning is based on concrete mechanisms, such as classification and statistical pattern recognition.
In contrast, cognitive processing emphasizes abstract reasoning and problem solving.

• Machine Learning is based on dissimilar, discrete mechanisms. In contrast, cognitive processing emphasizes
uniform and integrated representation of data and information.

• Machine Learning is based on pipelines of different functions. In contrast, cognitive processing emphasizes
integrated architectures that provide seamless integration between various cognitive functions.

The ENI System architecture employs both traditional AI mechanisms as well as cognitive processes to achieve the best
of both worlds.

4.5.5 Introduction to Artificial Intelligence Mechanisms for Modular
Systems

NOTE: This clause is moved from the present document to a new document, titled "Introduction to Artificial
Intelligence Mechanisms for Modular Systems" (ETSI GR ENI 018 [i.37]).

5 ENI Architectural Requirements

5.1 Introduction
The following clauses define requirements for the ENI system architecture.

NOTE: The numbering of these requirements in the present document has changed from ETSI GS ENI 005 [i.42].

5.2 Functional Architectural Requirements for ENI Operation
The ENI System Architecture shall meet the following requirements.

[FAR1] ENI shall operate as a model-driven system.

NOTE 1: See clause 5.6 for more information.

[FAR2] ENI shall operate using one or more closed control loops.

NOTE 2: See clause 5.7 for more information.

[FAR3] ENI shall use a modular architecture, realized as a set of Functional Blocks.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 51

[FAR3.1] A Functional Block may consist of zero or more nested Functional Blocks, forming a hierarchy.

[FAR3.2] In a set of hierarchical Functional Blocks, a lower-level Functional Blocks shall implement
functionality of a higher-level Functional Block in a modular fashion.

[FAR3.3] In a set of hierarchical Functional Blocks, a lower-level Functional Block need not implement
functionality that is not needed by a higher-level Functional Block.

NOTE 3: [FAR3.2] and [FAR3.3] mean that a lower-level Functional Block only implements functionality required
by a higher-level Functional Block, and cannot implement orthogonal functionality. Hence, the purpose
of a lower-level Functional Block is to modularize functionality for better reusability, availability,
performance, and other similar metrics.

[FAR4] ENI shall use and recognize administrative domains.

[FAR4.1] An Administrative Domain shall be governed by a common set of administrative policies.

[FAR4.2] An Administrative Domain may consist of zero or more nested Administrative Domains, forming
a hierarchy.

[FAR4.3] In a set of hierarchical Administrative Domains, a lower-level Administrative Domain shall
implement all administrative policies of all of its higher-level Administrative Domains.

[FAR4.4] In a set of hierarchical Administrative Domains, a lower-level Administrative Domain may
implement new administrative policies that do not conflict with any administrative policies defined
by any higher-level Administrative Domain.

NOTE 4: [FAR4.3] and [FAR4.4] mean that a lower-level Administrative Domain implements all administrative
policies defined by a higher-level Administrative Domain. It cannot implement any administrative
policies that conflict with any administrative policies defined by a higher-level Administrative Domain.

[FAR4.5] Operations between entities within an Administrative Domain may interact via Services defined
within that Administrative Domain.

[FAR4.6] Operations between entities between different Administrative Domains shall interact via Services
defined explicitly for Federated Domains.

[FAR4.7] The behaviour of Federated Domains shall be governed by special Policies, called Federation
Policies.

[FAR4.8] Tasks should be assigned to Domains in a distributed Domain by Policies.

[FAR4.9] Task assignment should be based on mechanisms that match the functionality offered by a Domain
to the needs of the tasks.

[FAR5] ENI may use agents, organized in various architectures, to implement various functions defined in
one or more of its Functional Blocks.

[FAR5.1] A set of autonomous and/or intelligent agents may be used for data ingestion, normalization,
denormalization, and output generation.

[FAR5.2] ENI may use a variety of agent architectures, ranging from simple reactive architectures to fully
cognitive architectures.

[FAR5.3] ENI may use a distributed or hybrid agent architecture.

[FAR6] The ENI System may use negotiation to arrive at a decision that is satisfactory to both the ENI
System and the entity that it is communicating with.

[FAR6.1] If negotiation is not used, or if it is used but fails, the Designated Entity of the Assisted may define
a preferred mode for the ENI System to operate in.

[FAR6.2] If negotiation is not used, or if it is used but fails, the ENI System may have a default mode of
operation that specifies the mode of operation to use when a class of decision is reached that is not
specified by the Assisted System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 52

[FAR6.3] Negotiation shall include the ability for each entity participating in the negotiation process to
discover the capabilities of all other entities that it is negotiating with.

[FAR6.4] Negotiation shall include the ability for each entity participating in the negotiation process to
synchronize state with each other.

[FAR6.5] Negotiation shall include the ability for each entity participating in the negotiation process to agree
on parameters and resources to use as part of the negotiation process.

5.3 Architectural Requirements for Mode of Operation
The ENI Mode of Operation shall meet the following requirements.

[MOP1] The ENI System shall support a recommendation mode.

[MOP2] The ENI System may support a management mode of operation.

[MOP3] The ENI System may support a mixed mode of operation for different sets of decision classes (e.g.
some types of decisions are made using one mode of operation, and other sets of decisions are
made using the other mode of operation).

[MOP4] The ENI System shall discover (and/or be told) the capabilities of the Assisted System in
supporting the desired mode of operation.

[MOP5] The ENI System shall support and adapt to external inputs for each mode of operation.

[MOP5.1] The ENI System shall support and adapt to changes in the context and/or situation of the Assisted
System.

[MOP5.2] The ENI System shall support external input of regulatory policies and operator goals.

[MOP6] The ENI System shall use the above two factors in [MOP5] to select its mode of operation.

[MOP7] The ENI System shall ask permission from the Operator or Designated Entity to change modes of
operation using an agreed External Reference Point.

[MOP8] The Assisted System, or its Designated Entity shall ask the ENI System to change modes of
operation using an agreed External Reference Point.

[MOP9] The ENI System shall confirm through the agreed External Reference Point to the Operator or
Designated Entity of the Assisted System when it has successfully switched modes of operation.

[MOP10] The ENI System may suggest that a particular mode of operation is used when a class of decision
is reached that is not specified by the Assisted System.

[MOP11] The Assisted System and/or its Designated Entity need not accept the recommendations offered by
the ENI System when in recommendation mode. This includes those decisions that apply to
recommendations when the Assisted System is in a mixed mode of operation.

[MOP12] The Assisted System and/or its Designated Entity need not accept the recommendations offered by
the ENI System when in management mode. This includes those decisions that apply to commands
when the Assisted System is in a mixed mode of operation.

[MOP13] Decisions and commands in management mode are subject to the approval of the Assisted System
(or its Designated Entity).

[MOP14] The Assisted System (or its Designated Entity) may tell the ENI System that it approves all
commands sent to it when it is in management mode.

[MOP15] The Assisted System may revoke the above setting at any time, in which case [MOP13] then
applies (once acknowledged by the ENI System).

[MOP16] If the Assisted System (or its Designated Entity) rejects a command sent to it by the ENI System
when it is in recommendation mode, it shall send a notification to the ENI System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 53

[MOP17] If the Assisted System (or its Designated Entity) rejects a command sent to it by the ENI System
when it is in management mode, it shall send a notification to the ENI System.

5.4 Non-Functional Architectural Requirements for ENI
Operation

ENI shall meet the following non-functional requirements.

[NFA1] All classes of Assisted System need not change in order to benefit from, and use the outputs of, the
ENI System.

[NFA1.1] If an API Broker is used, then the ENI System need not be responsible for translating its
recommendations and commands to a form that the Assisted System, of any class, can understand.

[NFA1.2] The ENI System may use an API Broker, or similar function, to perform the translation specified
in [NFA1.1].

[NFA1.3] All classes of Assisted System need not change in order for the ENI System to ingest data from the
Assisted System.

[NFA1.4] All classes of Assisted System need not change in order for the ENI System to send
recommendations and commands to the Assisted System.

5.5 Reference Point Requirements
ENI shall meet the following requirements for Reference Points that it defines.

[RPR1] The ENI System shall use Reference Points defined in the present document (see clause 7) for all
communication and interaction with the Designated Entity of the Assisted System.

[RPR1.1] The ENI System shall communicate with either the Assisted System or the Designated Entity of
the Assisted System by using established ENI Reference Points.

NOTE 1: In both cases, the operator (or its Designated Entity) is in control.

[RPR1.2] The ENI System need not communicate with the Assisted System by using non-ENI Reference
Points.

NOTE 2: Reference Points not defined by ENI are not within the current scope of the ENI Architectural
Framework.

[RPR2] All External Reference Points shall provide common characteristics and behaviour.

[RPR2.1] The ENI System shall provide RESTful interfaces for each External Reference Point.

[RPR2.2] All External Reference Points may have the capability to define operations that work on lists of
objects.

[RPR2.3] All External Reference Points shall provide standardized exception handling for all operations.

[RPR2.4] All External Reference Points may provide one or more mechanisms to process multiple messages
at a given Reference Point in parallel.

[RPR3] All Internal Reference Points shall provide common characteristics and behaviour.

[RPR3.1] All Internal Reference Points may have the capability to define operations that work on lists of
objects.

[RPR3.2] All Internal Reference Points shall provide standardized exception handling for all operations.

[RPR3.3] All Internal Reference Points may provide one or more mechanisms to process multiple messages
at a given Reference Point in parallel.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 54

[RPR4] All Internal and External Reference Points shall provide common messaging behaviour.

[RPR4.1] ENI shall employ standardized messaging patterns to promote interoperability.

[RPR4.2] ENI may use synchronous and/or asynchronous messaging for internal and external
communication using Reference Points.

[RPR4.3] ENI shall use a set of dedicated message channels for communication over its Reference Points.

[RPR4.4] ENI shall use messages with appropriate properties to enable data to be exchanged over a channel.

[RPR4.5] ENI Functional Blocks may use routing to decouple a message sender from a message receiver.

NOTE 3: Communication can be from channel-to-channel, or employ different Functional Blocks to create more
complex messaging flows.

[RPR4.6] ENI Functional Blocks may use filtering or similar operations to determine the destination of the
message.

NOTE 4: Filtering enables a message to be forwarded or routed based on it matching certain criteria. This includes
the presence or absence of fields in a message as well as their content.

[RPR4.7] ENI Functional Blocks may use point-to-point, point-to-multi-point, publish-subscribe, or receiver
lists to communicate with recipients.

NOTE 5: Combinations of these (e.g. receive a message, split, process, and recombine) may also be supported.

[RPR4.8] ENI Functional Blocks may use a set of translation mechanisms to change the format and/or
structure of the message to suit the needs of message receivers.

[RPR4.9] ENI Functional Blocks may use a set of enrichment mechanisms to change the content of the
message to suit the needs of message receivers.

[RPR4.10] ENI Functional Blocks may use a set of patterns to consume messages.

[RPR4.11] ENI Functional Blocks may support durable messaging.

NOTE 6: For the purposes of the present document, durable messaging ensures that if a subscriber is temporarily
disconnected when a message is sent, the subscriber is guaranteed to see this message when it reconnects.

[RPR5] All Internal and External Reference Points shall provide testing to verify that the operation
occurring on that Reference Point was successful.

5.6 Knowledge Modeling Requirements
[KPR1] A domain shall be modelled using existing and new design patterns wherever possible.

[KPR2] ENI shall produce normalized data and information in a consistent format that all ENI Functional
Blocks can understand.

[KPR2.1] ENI shall provide the ability to ingest structured, semi-structured, and unstructured data from
different data sources.

[KPR2.2] ENI may provide the ability to ingest telemetry data in streaming and batch modes, as well as
on-demand.

[KPR2.3] ENI shall pre-process all ingested data to provide a uniform and consistent input format.

[KPR2.4] The API Broker may help translate input data to be ingested.

[KPR2.5] The functions of data ingestion and normalization may be separated or combined.

[KPR2.6] ENI shall use context information to augment ingested data and information where applicable.

[KPR2.7] ENI shall provide the ability to change the sources of data to be ingested based on changing
context information.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 55

[KPR2.8] ENI shall use situation information to augment ingested data and information where applicable.

[KPR2.9] ENI shall provide the ability to change the sources of data to be ingested based on changing
situation information.

[KPR2.10] ENI may use a set of models, including data types and data structures, to perform the
transformation into a unified data format.

[KPR2.11] ENI may use a set of ontologies, along with either description logic or first-order logic, to perform
the transformation into a unified data format.

[KPR3] ENI shall process new data and information using its stored knowledge.

[KPR3.1] If new data, information, or knowledge does not conform to the internal ENI models, then either
the models and/or the new data, information, or knowledge shall be changed to realign them.

[KPR3.2] New data, information, and knowledge that is fully processed by one ENI Functional Block shall
conform to the internal models held by the ENI System, at that moment in time, before being
passed to another ENI Functional Block.

[KPR3.3] Alignment of new knowledge with existing knowledge may be done by any set of Functional
Blocks at any time in the ENI architecture.

[KPR3.4] Data, information, or knowledge shall be semantically annotated.

[KPR4] ENI shall represent policies using an information model and one or more data models.

[KPR5] ENI shall represent contextual information using an information model and one or more data
models.

[KPR6] ENI shall represent situational information using an information model and one or more data
models.

[KPR7] ENI shall resolve perceived changes to existing data, information, and knowledge.

[KPR8] ENI may provide augmentation of information and data models using one or more ontologies.

[KPR8.1] ENI may use hypergraphs and/or multigraphs to perform the semantic augmentation process.

[KPR8.2] ENI shall use semantic closeness to determine which model elements are related to which
ontologies when building a knowledge representation.

[KPR8.3] ENI shall use a semantic relationship to construct edges in a hypergraph or multigraph as part of
the augmentation process.

[KPR8.4] ENI shall use a form of first order logic (including description logics) when it is required to prove
a hypothesis.

[KPR9] ENI shall provide different Repositories for the storage, update, and retrieval of different types of
data and information that require different types of access control.

[KPR9.1] ENI shall provide at least one Data Repository for the storage, update, and retrieval of collected
data and information from different parts of the Assisted System after processing by the Data
Ingestion and Normalization Functional Blocks.

[KPR9.2] One or more Data Repositories may be used for the storage, update, and sending of data and
information to the Denormalization and Output Generation Functional Blocks.

[KPR9.3] ENI shall provide at least one Knowledge Repository for the storage, update, and retrieval of
knowledge and wisdom used for making decisions.

NOTE: See ETSI GR ENI 016 [i.35] for further information and examples of knowledge and wisdom.

[KPR9.4] ENI shall provide at least one Model Repository storage, update, and retrieval of data models,
ontologies, and the information model.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 56

[KPR9.5] ENI shall provide at least one Blackboard Repository to provide a shared working space for
computations required by different Functional Blocks.

[KPR9.6] All Repositories may be used to store and retrieve historical data and information of its appropriate
type.

[KPR9.7] Enhanced security mechanisms shall be used to govern the access, update, use, and transmission of
the information and data associated with any Model.

5.7 Control Loop Processing Requirements
[CLR1] ENI shall use one or more closed control loops to implement decisions to ENI Functional Blocks.

[CLR1.1] An ENI closed control loop shall operate on a clearly defined goal.

[CLR1.2] If ENI uses more than one closed control loop, each closed control loop may operate
independently or as part of a group of closed control loops to accomplish a goal.

[CLR2] Real-time ENI closed control loop decisions may only be allowed for class 3 Assisted Systems.

[CLR2.1] Class 1 and Class 2 Assisted Systems may only use ENI recommendations and/or commands in
non-real-time decisions.

[CLR2.2] The ENI System may only be involved in real-time control loop decisions for class 3 Assisted
Systems.

[CLR3] ENI shall use one or more closed control loops as part of its main processing architecture.

[CLR3.1] ENI shall use at least one OODA-like closed control loop to implement decisions.

NOTE 1: See [i.1] for a detailed explanation of why OODA-based control loops, such as FOCALE, are superior to
other types of control loops.

[CLR3.2] ENI may use other, non-OODA-like closed control loops for specialized purposes.

[CLR3.3] ENI may provide the ability to accelerate the processing through a closed control loop (i.e. not
have to examine each of the constituent elements of the closed control loop).

[CLR3.4] ENI shall provide the ability to interrupt the processing of a closed control loop to perform other
actions.

[CLR3.5] ENI closed control loops shall be able to request data, information, and knowledge from any
Functional Block in the ENI System that it has access privileges for.

[CLR3.6] ENI closed control loops shall be able to supply decisions to any Functional Block in the ENI
System that it has access privileges for.

[CLR3.7] ENI closed control loops shall be able to provide data, information, and knowledge in support of
its decisions to any Functional Block in the ENI System that it has access privileges for.

[CLR3.8] An ENI closed control loop shall provide instructions in the form of an ENI policy.

NOTE 2: An ENI policy may be expressed in an imperative, declarative, or intent form, or as a combination of
these forms.

[CLR3.9] An ENI closed control loop may accept instructions in the form of an ENI policy.

[CLR3.10] An ENI closed control loop shall log each goal and its final set of actions for that goal.

NOTE 3: Achieving a goal may require multiple iterations and multiple decisions per iteration. This requirement
states that the goal and the final set of actions that either achieved the goal or concluded that the goal
could not be achieved will be logged.

[CLR4] An ENI closed control loop shall be associated with one or more administrative or management
domains.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 57

[CLR4.1] An ENI closed control loop may span multiple administrative and/or management domains.

[CLR4.2] An ENI closed control loop in one administrative and/or management domain shall be able to
request an ENI closed control loop in a different administrative and/or management domain to
implement decisions on its behalf.

[CLR5] An ENI System need not be aware of the number of closed control loops that an Assisted System
has.

[CLR6] An ENI System need not be aware of how commands that it sent to the closed control loop of an
Assisted System are realized by the Assisted System.

NOTE 4: Commands sent by an ENI System may directly or indirectly affect the behaviour of a closed control loop
of an Assisted System. In the former case, the commands are delivered directly to the closed control loop,
while in the latter case, the commands are first processed by one or more Functional Blocks of the
Assisted System before they are delivered to the closed control loop. In either case, the ENI System is
unaware of these mechanics.

5.8 Functional Block Processing Requirements

5.8.1 Context Processing Requirements

[CTX1] Context shall be used for assigning different roles to perform context-sensitive behaviour and
processing.

[CTX2] Context shall be used for establishing the identity of an object of interest that needs to interact with
the ENI System.

[CTX3] Context shall be used for establishing the authentication, authorization, accounting, auditing, and
similar privileges of an entity that needs to interact with the ENI System.

[CTX4] Context shall be used for determining what information and data should be retrieved for a given
context, as well as how often the information and data need refreshing.

[CTX5] Context shall be used for determining the relevance of ingested information and data.

NOTE 1: ENI uses a model-driven architecture, which means that the current context, as well as changes to that
context, can be mapped directly to model elements (e.g. objects, attributes, and relationships). This
enables various types of functions, such as fuzzy logic, to be used to define and alter the relevance of
ingested information and data.

[CTX6] Context shall be used for determining whether goals are being satisfied.

NOTE 2: Goals are represented as formal (i.e. mathematically well-defined) policies or rules. An ENI System may
use various mechanisms, such as simple weighting or decision trees, as well as fuzzy logic, for measuring
relevance and to determine if goals are being satisfied.

5.8.2 Cognition Requirements

[COG1] Cognition Processing in ENI shall use formal structures to model and represent each stage of the
cognition process [7] and [i.4].

[COG2] A formal cognition model shall be used to guide the cognition processes used in an ENI System.

[COG3] Cognition shall be aware of its own capabilities.

NOTE 1: Cognition is the process of acquiring data and information, understanding the data and/or information,
and producing new knowledge. Its previously stored information and knowledge, as well as modelled
objects and behaviours, define the capabilities of an ENI cognitive System. This is similar to how
Autonomic Systems are designed and implemented. See [4], [i.2] and [i.4].

[COG4] Cognition shall examine its own behaviour to ensure that inappropriate conclusions were not
reached.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 58

NOTE 2: Examination of recommendations and commands issued by an ENI System may be done using a variety
of methods. For example, modelled information and data may be translated into finite state automata, and
the projected action to be taken by an ENI System may then be matched to the actual behaviour observed.

[COG5] Cognition processing may be used for providing explanations as to which actions an ENI System
took.

[COG6] Cognition shall use various types of repositories, such as ones dedicated for storing short- and
long-term knowledge.

[COG7] Cognition processes shall continuously evaluate and dynamically update the knowledge it has.

[COG8] Cognition shall be used to meet, preserve, or protect the end-to-end goals of the system.

[COG9] An ENI System may use different processes, including first-order logic or computational
linguistics, to derive or infer the understanding of a new fact or behaviour.

[COG10] An ENI System may store decisions, along with their stimuli, for future use.

[COG11] An ENI System shall review decisions to assess their accuracy and to determine if that was the
best, or optimal, decision at that particular time.

5.8.3 Policy Management Requirements

[PMR1] Policies may be used to implement recommendations or commands.

[PMR1.1] ENI Policies may be defined as imperative, declarative, and/or intent policies.

[PMR1.2] ENI Policies shall be stored in a form that facilitates their reuse.

[PMR1.3] ENI Policies may be defined and implemented using one or more Domain Specific Languages.

NOTE 1: ENI DSLs are defined by developing a formal grammar that is used to formally verify the structure and
correctness of the grammar, and hence, are testable by definition. The grammar of ENI DSLs contain
modelled knowledge.

[PMR1.4] ENI Policies shall be used to recommend or define (depending on operational mode) desired
behavioural changes to the Assisted System.

[PMR1.5] ENI Policies may be used to recommend or define desired behavioural changes to Functional
Blocks of the ENI System.

[PMR2] ENI Policies shall incorporate any contextual changes.

NOTE 2: ENI Policies incorporate changes in context before they are sent to the Entities that they affect. This
enables the behaviour of those Entities to adjust to changing context.

[PMR3] ENI Policies may incorporate situationally aware information.

NOTE 3: ENI Policies may incorporate situationally aware information before they are sent to the Entities that they
affect. This enables the behaviour of those Entities to adjust to changing situations, such as changes in
goals or threats.

[PMR4] The ENI System shall use DSLs to specify end-to-end goals to the Cognitive System.

[PMR5] The ENI System and the Assisted System shall agree on what types of Policy Rules are
exchanged.

[PMR5.1] The ENI System and the Assisted System may use negotiation to specify the type and format of
Policy Rules that are exchanged.

[PMR5.2] The ENI System and the Assisted System may specify the grammar of any Policy Rule DSL that
will be exchanged between them.

[PMR5.3] The ENI System shall acknowledge the receipt of Policy Rules sent by the Assisted System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 59

[PMR5.4] The Assisted System shall acknowledge the receipt of Policy Rules sent by the ENI System.

[PMR6] The ENI System and the Assisted System shall agree on how Policy Rules are executed.

[PMR6.1] The Assisted System may request the ENI System to negotiate parameters to arrive at a mutually
acceptable Policy.

[PMR6.2] The Assisted System shall report to the ENI System if any data, information, recommendations, or
commands sent to it by the ENI System are not understood.

[PMR6.3] The Assisted System may ask for further clarifying information, including examples, if it has
received data, information, or Policies from the ENI System that it does not understand.

[PMR6.4] The ENI System may request the Assisted System to negotiate parameters to arrive a mutually
acceptable Policy.

[PMR6.5] The ENI System shall report to the Assisted System if any data, information, recommendations, or
commands sent to it by the Assisted System are not understood.

[PMR6.6] The ENI System may ask for further clarifying information, including examples, if it has received
data, information, or Policies from the Assisted System that it does not understand.

[PMR6.7] The ENI System shall record any comprehension problems details in [PMR6.2], [PMR6.3],
[PMR6.5], and [PMR6.6] in its knowledge base.

[PMR6.8] The ENI System shall record the correct format and content to any comprehension problems found
in [PMR6.7] in its knowledge base.

[PMR7] Policy Rules may have descriptive and/or prescriptive metadata attached.

5.9 AI Modelling and Training Model Requirements
[AIMT1] An ENI System shall incorporate methods to discover bias against individuals and groups of

objects, ideas, and people.

[AIMT2] An ENI System shall be able to demonstrate that it uses a set of repeatable mechanisms as part of
the machine learning process to help mitigate bias.

[AIMT3] An ENI System shall be able to demonstrate adherence to appropriate standards for showing that it
can detect and mitigate bias.

[AIMT4] An ENI System shall analyse and provide feedback and/or explanation on ethical decisions.

[AIMT4.1] Agents used by an ENI System should use one or more mechanisms to enable their ethical
decisions to explain their actions.

[AIMT4.2] An ENI System should augment its learning and reasoning mechanisms with whitelist and
blacklist rules.

[AIMT5] An ENI System should use formal logic(s) to be able to mathematically prove hypotheses.

[AIMT6] An ENI System may use either an individual or a collaborative ethical decision-making
framework.

[AIMT6.1] An ENI System shall use a formal cognition model for each intelligent agent that is used for
ethical decision-making.

[AIMT6.2] An ENI System may use a logically separate mechanism to reconcile ethics-based requirements
with the proposed actions of an agent before those actions are implemented.

[AIMT6.3] Individual ethical decision-making frameworks used by an ENI System shall enable agents to
make ethical decisions, either on their own or in consultation with other agents.

[AIMT6.4] Individual ethical decision-making frameworks used by an ENI System shall be able to determine
if an ethical decision made by another agent is in fact ethical or not.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 60

[AIMT6.5] Collaborative ethical decision-making frameworks used by an ENI System shall form a network of
trust to ensure that ethical decisions are free of uncertain and malicious behaviour.

[AIMT6.6] Collaborative ethical decision-making frameworks used by an ENI System may use a collection of
specialized agents (e.g. some being deontological agents, and others being consequentialist
agents).

[AIMT6.7] A learning mechanism should be used to develop strategies to compute a collective decision by
these agents in a collaborative ethical decision-making framework.

[AIMT6.8] The learning mechanism in a collaborative ethical decision-making framework may include a
voting strategy, where different agents are assigned different weights based on the type of the
ethical decision to be made.

[AIMT7] An ENI System shall be compliant with any applicable standards that define how ethics should be
processed.

[AIMT7.1] An ENI System shall protect privacy data.

[AIMT7.2] An ENI System should make as many of its decisions as possible to be transparent.

[AIMT7.3] An ENI System should be able to represent the needs of an end-user (e.g. act as a proxy for the
user in machine-to-machine decisions).

5.10 API Requirements
[API1] An ENI System should use an API Broker to communicate with external entities such as the

Assisted System.

[API2] An ENI System may interact with one or more Assisted Systems.

[API2.1] An ENI System may interact with APIs and/or the Designated Entity for class 1 and 2 Assisted
Systems.

[API2.2] An ENI System should use APIs to interact with multiple Assisted Systems based on the
communications architecture used by the Assisted Systems, as specified in [API3] or [API4].

[API3] An ENI System should interact with one or more collaborating Assisted Systems by sending the
same API commands to each of the collaborating Assisted Systems.

NOTE: "Collaborating" means that each of the Assisted Systems has the same capabilities and responsibilities.

[API3.1] An ENI System need not know that it is communicating with a specific Assisted System.

[API3.2] An ENI System need not be aware of the number of collaborating Assisted Systems that it is
sending recommendations and commands to.

[API3.3] An ENI System may use any communication mechanism that ensures that the same
recommendations and commands are sent to each collaborating Assisted System.

[API3.4] The interactions between the API module in each Functional Block of each collaborating Assisted
System need not be visible to an ENI System.

[API4] An ENI System shall know the identity of each non-collaborating Assisted System that the ENI
System is directly connected to, if that Assisted System wants to receive recommendations and/or
commands.

[API4.1] An ENI System shall be aware of the capabilities and responsibilities of each non-collaborating
Assisted System that it is directly connected to.

[API4.2] An ENI System should be aware of the number of non-collaborating Assisted Systems that it is
sending recommendations and commands to.

[API4.3] An ENI System may be able to indirectly control non-collaborating Assisted Systems that it is not
directly connected to.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 61

[API4.4] An ENI System need not be aware of its control of the behaviour of any non-collaborating
Assisted Systems that it is not directly connected to.

[API4.5] The interactions between the API module in each Functional Block of each non-collaborating
Assisted System need not be visible to an ENI System.

[API5] An ENI System shall include API Management.

[API5.1] An ENI System shall include authentication of APIs.

[API5.2] An ENI System shall include authorization of APIs.

[API5.3] An ENI System shall include accounting of APIs.

[API5.4] An ENI System shall include auditing of APIs.

6 ENI Reference Architectural Framework

6.1 Introduction
This architectural framework describes the ENI System as a set of Functional Blocks. Each Functional Block is
described in terms of its inputs, outputs, state, and optionally, transfer function. This specifically means that this
architectural framework does not define a specific implementation.

6.2 Design Principles of the ENI System architecture

6.2.1 Overview

The following are generic design principles that shall be followed in the design of the ENI System Architecture:

1) The internal implementation of a Functional Block shall not be defined.

2) Functional Blocks may be nested, where the nested Functional Blocks provide greater detail for the containing
Functional Block. See clause 6.2.2 for more information.

3) Management, control, interaction with the Assisted System and orchestration of the ENI System shall be
defined in terms of Reference Points that may use APIs and/or DSLs.

4) The ENI System may provide management, control, and/or orchestration commands and recommendations to
the Assisted System.

5) Architectures from other SDOs shall be interfaced to using a subset of dedicated Reference Points for that
purpose.

6) It is desirable for the ENI System to communicate with external actors. To maximize the ease with which this
is accomplished, the ENI System shall translate external policies, data, services, and other information to a
form it can understand, and shall not rely on external actors understanding its internal functionality. Similarly,
outputs from the ENI System shall be translated to a form that external actors can consume. An ENI System
shall use an API Broker to insulate the ENI System from having to know what entity it is specifically
communicating with.

7) Any Functional Block may use negotiation to achieve its goals. See clause 6.2.3.5 for more information.

8) ENI shall use role-based modelling [i.5] and [i.6] to enable different functions and services to be viewed,
accessed, and managed. This includes individual and groups of users, objects, Functional Blocks, and
applications representing these entities.

9) ENI shall use one or more closed control loops as part of its main processing architecture. The primary control
loop shall be at least one OODA-like closed control loop. See clause 5.7 for control loop requirements.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 62

6.2.2 Nesting of Functional Blocks

Figure 6-1 shows a simplified notation (compared to UML) for Functional Blocks. The following terms are defined:

• Nested Functional Block: a Functional Block that is contained by another Functional Block.

• External Reference Point: a Reference Point that is external to this Functional Block.

• Internal Reference Point: a Reference Point that is internal to this Functional Block.

• Port: an interaction point between the Functional Block and its environment.

• Logical Connectives: logical AND, OR, and NOT operators may be used to define flow paths.

Ports may be uni- or bi-directional; this is indicated with one or two arrows, respectively.

Two examples of nested Functional Blocks are shown in Figure 6-1. There are two top-level Functional Blocks, named
A and B. A contains two nested Functional Blocks, named A.1 and A.2. B contains two nested Functional Blocks,
named B.1 and B.2; B.1 contains two nested Functional Blocks, named B.2.1 and B.2.2.

Figure 6-1: Functional Block Notation

In text form, using indentation to indicate nesting, Figure 6-1 may be represented as follows:

• Functional Block A:

- Functional Block A.1.

- Functional Block A.2.

• Functional Block B:

- Functional Block B.1.

- Functional Block B.2:

 Functional Block B.2.1.

 Functional Block B.2.2.

In Functional Block B, a logical AND connector is used to indicate that the input interface (at the level of Functional
Block B) shall connect to both Functional Block B.2.1 and Functional Block B.2.2. Logical connectives are not limited
to occurring within a Functional Block; they may control flows between any Functional Blocks at any level.

Administrative and Management Domains may be associated with multiple Functional Blocks. For example, in
Figure 6-1, one configuration could be that Functional Blocks A and B (and their constituent Functional Blocks) could
be part of the same Administrative or Management Domain. As another example, Functional Block A.1 and Functional
Block B.2 could be part of the same Administrative or Management Domain.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 63

Closed control loops may also be associated with multiple Functional Blocks, in the same way as described above for
Administrative and Management Domains.

6.2.3 Communication and Interaction

6.2.3.1 Introduction

All standardized communication between the ENI System and the Assisted System (or its Designated Entity) shall use
External Reference Points, which are defined in clause 7 of the present document. The ENI System shall be defined as a
set of Functional Blocks (see clauses 4.5 and 6.3). Functional Blocks define a recursive mechanism to represent
functionality with well-defined inputs and outputs; if these inputs and/or outputs are meant to be interoperable, then
they shall communicate using an ENI Reference Points. An External Reference Point (see clauses 4.4.6.1, 7.2 and 7.3)
is a Reference Point between an ENI System Functional Block and an external system, whereas an Internal Reference
Point (see clauses 4.4.6.2, 7.6 and 7.7) is a Reference Point between different ENI System Functional Blocks.

Communication is not limited to a single mechanism: direct (e.g. point-to-point) and/or indirect (e.g. systems connected
by a bus) communication may be used for any ENI Reference Point.

Communication shall be performed between two or more trusted entities, and forms a trusted system [2] (see
requirement [MOP11] in clause 5.3).

An ENI System shall be able to communicate and interact with Assisted Systems as an external system. The current
ENI System need not communicate as an entity embedded in an Assisted System. This is because all of the ENI
External Reference Points would then have to have two flavors, or profiles: one for normal operation as an external
means of communication, and one that is used only for internal communication.

NOTE: It is currently possible to co-locate (physically and/or logically) an ENI System with other systems (e.g.
an OSS). This enables the ENI System to keep using its defined External Reference Points in a consistent
manner.

In general, the ENI System shall acknowledge all commands and information given to it by the Assisted System or its
Designated Entity. Note that only the Designated Entity behaves as a trusted entity. The ENI System sends notifications
of other important events, such as completing the change to a new mode of operation, to the Designated Entity.

6.2.3.2 Discovery

A basic assumption is that when a device, application, or system starts up, it has no information about any peer devices,
the network structure, or what specific set of roles [i.1], [i.4] and [i.6] it is assigned to play. Therefore, the discovery
process should be repeated as often as necessary in order to find peers that support each function required. The
discovery process may be event-driven.

The discovery process also needs to be flexible enough to accommodate different topologies. The ENI System needs to
understand the capabilities of the Assisted System so that it may provide recommendations and commands for functions
that involve those capabilities.

EXAMPLE: The ENI System requires data to be monitored from the Assisted System in order for the ENI
System to supply recommendations and commands. If the Assisted System changes its
functionality, then the System Architecture should be notified of such changes so that the
monitored data may be adjusted.

The understanding of these capabilities shall be used to support appropriate recommendations and commands for the
desired mode of operation.

6.2.3.3 Direct Communication

ENI Functional Blocks may support direct (e.g. point-to-point) communication through sequences of messages.

EXAMPLE: Routing protocols use a model based on distributed devices that communicate repeatedly with each
other. Current routing protocols mainly consider simple data, such as link status. This is a form of
information synchronization between peers.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 64

6.2.3.4 Indirect Communication

ENI Functional Blocks may support indirect (e.g. systems connected by a bus, proxy, or broker) communication of
control and management parameters through sequences of messages.

6.2.3.5 Negotiation

6.2.3.5.1 Introduction

Negotiation is fundamentally a decentralized process that requires at least two entities, one designated as the buyer and
one or more designated as sellers. It is fundamental to various architectures, including message-driven and reactive
architectures (see https://www.reactivemanifesto.org/).

ENI shall use role-based modelling to identify buyers and sellers. ENI entities, such as services available in a
Functional Block, may participate as a buyer and/or a seller when negotiating externally (i.e. with the Assisted System
or its Designated Entity) or internally (i.e. with other Functional Blocks that are in different administrative domains of
an ENI System).

6.2.3.5.2 Distributive Negotiation

Distributive negotiation may be used by the buyer and/or the seller when either wants to gain as much in the negotiating
process. Distributive negotiation is a zero-sum game (i.e. each agent's gain or loss is balanced by the losses or gains of
the other agents). The participants may adopt different fixed positions (which may be extreme in nature, such as being
overly expensive); then, each seeks to give as little as possible before reaching a deal. This encourages one participant
to view the other as an adversary, rather than a partner. Put another way, distributive negotiation assumes that there is a
fixed amount of value (which could also be services and/or resources) to be divided between the bidding agents.

6.2.3.5.3 Integrative Negotiation

Integrative negotiation may be used by the buyer and/or the seller when either wants to form partners in the negotiating
process to ensure that it, and its partners, can maximize their gain. Integrative negotiation is a win-win (or
non-zero-sum) game (i.e. all participating agents can profit). In theory, this improves the quality and likelihood of
negotiated agreement by taking advantage of the fact that different parties often value various outcomes differently.
Integrative negotiation may have some distributive elements, especially when different agents value different items the
same, or when critical details are left to be allocated at the end of the negotiation. Integrative negotiation may involve a
higher degree of trust and the formation of relationships, which enables each collaborating agent to "win". Hence, a
good agreement is not one with maximum individual gain, but rather, one that provides optimum gain for all
collaborating agents. Put another way, integrative negotiation attempts to create value in the course of the negotiation
by either compensating the loss of one item with the gain of another item, or by restructuring the contract to specifically
enable all collaborating agents to benefit.

6.2.3.5.4 Functional Model: an Informative Example

A simplified version of a market-based distributed negotiation model is as follows:

• An agent declares itself as a buyer.

• The buyer publishes one or more contracts, where each contract includes a specification of the set of tasks to
be performed. The specification encodes a description of the task, any constraints, and metadata information.

• Agents that receive the contract request then decide if they want to bid on the contract. If so, then:

- Each bidding agent announces itself as a seller.

- Each seller then replies to the contract by either accepting the contract as is, or presenting a counter-
proposal. The counter-proposal may include differences on one or more parameters in each task in each
contract.

- Any seller may generate a set of sub-contracts to help it meet the terms of the contract. If this is done,
then the seller becomes a contract-buyer, and follows the above steps until it can satisfy the original
contract.

https://www.reactivemanifesto.org/

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 65

• The (original) buyer then may either accept a seller's bid, or provide a counter-proposal, to all agents that
submitted a bid on the contract.

6.2.3.5.5 Usage

ENI Functional Blocks may support negotiation of control and management commands. Negotiation is fundamental to
agent interaction, as it enables interaction between entities that have different functions, and helps entities arrive at a
mutually agreed upon compromise in functionality. It also may be used to negotiate data and commands exchanged
between an ENI System and an external entity.

In the context of an ENI System, a negotiation process between digital agents of each system achieves agreement on the
use of services and/or resources; this may also include a set of rules governing the use of each.

ENI is an experiential system, which means that it constantly learns while it is operating. This means that if the context
in which an ENI System is operating changes the behaviour and functionality required by an ENI System, then the
appropriate ENI Functional Blocks also change dynamically.

Therefore, static configuration of the behaviour of ENI Functional Blocks is not desirable, since the provided
functionality cannot change in response to changing context and/or situations. Negotiated behaviour enables each
negotiating entity to customize the functionality being negotiated dynamically at runtime. More importantly, it ensures
that the collaborating entities arrive at a mutually agreed-upon solution. For example, suppose that an ENI System has a
network slice management system to deliver sets of services to different customers from the same networked
infrastructure. It is possible to use AI-based solutions to dynamically analyse current operational performance, as well
as trends in that performance, and recommend or change network resources and services to adapt to changing user
needs, business goals, and environmental changes. In this example, the benefit of negotiation is efficiency. For example,
if the Functional Blocks that are supplying the changed behaviour have multiple programmable parameters, negotiating
a new service is likely to be more effectively done by asking for a desired overall service and using negotiation to
fine-tune applicable parameters. This also enables the negotiation to optionally include additional compensation, such
as credit issued.

The negotiation process is a request-response message exchange pattern that is guaranteed to terminate with success or
failure. More specifically, negotiation is a process by which two or more entities iteratively interact to agree on
parameter settings that best satisfy the objectives of all participants.

Robust negotiation processes include loop prevention, time-outs, and generic tie-breaking rules for each parameter that
is being negotiated. In addition, if negotiation is used in ENI, then the following additional communication
requirements are typical:

• ability for each negotiating entity to discover each other;

• ability for each negotiating entity to synchronize state with each other;

• ability for each negotiating entity to agree (negotiate) on parameters and resources to use directly with each
other.

If negotiation is not used, or if it is used but is not successful, architectural requirements [MOP11] and [MOP12] of
clause 5.3 apply.

6.2.4 Administrative and Management Domains

6.2.4.1 Introduction

A domain is a collection of Entities that share a common purpose (e.g. has a set of common characteristics and/or
behaviours and/or roles). Each constituent Entity in a Domain is both uniquely addressable and uniquely identifiable
within that Domain.

ENI uses two types of domains: Administrative Domains and Management Domains.

An Administrative Domain is a Domain that employs a set of common administrative processes to manage the
behaviour of its constituent Entities. A Management Domain is an Administrative Domain that uses a set of common
Policy Rules as the management mechanism to govern its constituent Entities.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 66

NOTE: A Management Domain refines the notion of a Domain by adding three important behavioural features:

1) it defines a set of administrators that govern the set of Entities that it contains;

2) it defines a set of applications that are responsible for different governance operations, such as
monitoring, configuration, and so forth;

3) it defines a common set of management mechanisms, such as policy rules, that are used to govern
the behaviour of MCMManagedEntities contained in the MCMManagementDomain. This is based
on the definition of an MCMDomain in [7].

6.2.4.2 Domain Operations

An Administrative Domain shall be governed by a Domain Authority. A Domain Authority is a set of management
entities that determines the Policies for a given Domain (and all child Domains of the given Domain). The Domain
Authority shall have the ability to delegate and revoke this ability, on a Domain-by-Domain basis, to another set of
management entities. ENI shall model a Domain Authority as a set of Roles.

An Administrative Domain shall use a set of management processes to govern the behaviour of its constituent entities.
If Policy Rules are used, then an Administrative Domain is considered a Management Domain.

Policies associated with a given Management Domain govern the behaviour of that Management Domain. All child
Management Domains of this given Domain shall implement the same behaviour, and shall not implement behaviour
that conflicts with the behaviour, defined in a parent Management Domain. In the present document, Policies conflict
with each other if, for the same stimulus, they produce different behaviours. Any type of Policy Rule (e.g. imperative,
declarative, intent) may be used to specify the behaviour of a Domain and entities within that Domain. The behaviour of
a Management Domain includes any operation whose execution is specified using a Policy. Exemplary operations
include the creation, reading, updating, managing, and deleting of objects (and their attributes), and invoking of
methods in information and data models (and associated implementations), as well as defining access privileges to data,
information, and knowledge within a Management Domain.

From this point forward in the present document, the term "Domain" shall refer specifically to a Management Domain
unless otherwise indicated.

6.2.4.3 Interaction between Hierarchical Domains

The position of a Domain in a hierarchy typically defines the containment relationships of that Domain (i.e. is that
Domain contained in another Domain, and does that Domain contain other Domains). Examples are shown in
Figure 6-2.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 67

Figure 6-2: Exemplary Domain Relationships

In Figure 6-2, Domain B contains two child Domains, B.1 and B.2. Conceptually, these Domains are at the same level,
and are called sibling Domains. Domain B.2 also contains 2 child Domains, B.2.1 and B.2.2. Thus, containment
relationships shown in Figure 6-2 are summarized as follows:

• Domains B and C are both child Domains of A and sibling Domains (of each other).

• Domains B.1 and B.2 are also sibling Domains.

• Domain B.2 is a child Domain of Domain B and the parent Domain of B.2.1 and B.2.2.

• Domains B.2.1 and B.2.2 are aso sibling Domains.

For this example, the following rules apply concerning all types of Policies that are applied to these Domains:

• Domain A shall be governed by a common set of administrative Policies (see requirement [FAR4.1] in
clause 5.2).

• If Domain A defines a Policy P1, then all child Domains of Domain A shall implement P1 (see requirement
[FAR4.3] in clause 5.2).

• In addition, all child Domains of Domain A shall not define a Policy P2 that conflicts with P1 (see requirement
[FAR4.4] in clause 5.2).

• Any child Domain of Domain A may define zero or more new administrative Policies; however, each new
administrative Policy defined by a child Domain shall not conflict with any administrative Policy in any parent
Domain of that child Domain (see requirement [FAR4.4] in clause 5.2).

• Sibling Domains to Domain A (not shown) shall use federation Policies to govern how the Domains interact;
examples include controlling access to and communication with Domain entities, and deciding to work
together (e.g. in a master-slave, 3-tier, collaborative, distributed, or other manner) (see requirement [FAR4.7]
in clause 5.2).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 68

6.2.4.4 Interaction between Distributed Administrative Domains

A distributed set of Domains is a set of Domains whose components work together to achieve a set of common goals.
One or more communication mechanisms are used to coordinate actions between the Domains. Since each Domain in a
set of distributed Domains typically has only a limited and incomplete view of the system, the components of each
Domain in a distributed system have access to their own distinct Domain memory. Data may be local to a given
Domain. In addition, some data may be shared across multiple Domains.

Distributed Domains are used to distribute tasks to different Domains that have functionality most suited to
accomplishing the goals required. If a goal can be subdivided into multiple tasks, then each such task can run
concurrently.

Policies should be used to assign tasks to appropriate Domains (see requirement [FAR4.8] in clause 5.2). Task
assignment should use one or more mechanisms, such as metadata, to guide the assignment of tasks to Domains (see
requirement [FAR4.9] in clause 5.2). For example, the concept of a Capability is defined in [7]. A Capability is a type
of metadata, and represents a set of features that are available to be used from a managed entity. These features may
include all, or a subset, of the available features of the managed entity. These features may, but do not have to, be used.
A Capability provides information about the functionality of a managed entity that enables management entities to
decide whether that managed entity is useful for a given task.

Distributed Domains also enable failures in all or part of a Domain to be more easily tolerated.

6.2.4.5 Interaction between Federated Administrative Domains

A federated set of Domains is a set of Domains that use formal agreements to govern their interaction and behaviour.
The agreement(s) are used to standardize interoperability between each federated Domain. The set of federated
Domains act collectively, but each Domain is distinct and has its own identity.

Data is typically local for each Domain in a Federated Domain. Each domain may have access to common shared data,
information, and knowledge, but are limited in their ability to edit or remove these common shared data, information,
and knowledge. For example, each Domain may be given the same starting information model and/or ML model, but
can only send its own suggested updates to a Governing Authority that is responsible for implementing those changes.

Policies should be used to govern the behaviour of each Domain in a federated Domain (see requirement [FAR4.7] in
clause 5.2). This includes determining which Domains in a federated Domain assist which other Domains on a given
task or goal.

Entities in each federated Domain may communicate with each other. External users and applications interact with each
Domain independently (i.e. there is typically no mechanism, such as a proxy, that enables the same user or application
to talk to all federated Domains together).

6.2.5 Modelled Knowledge

NOTE: This entire clause has been moved from the present document to a new document, titled "Representing,
Inferring, and Proving Knowledge in ENI", and will be specified in a future release.

6.2.6 Bias

6.2.6.1 Introduction

Bias is defined as "the systematic difference in treatment of certain objects, ideas, or people in comparison to others". In
this definition, systematic means that the difference in treatment is predictable and typically constant.

The different types of Bias are defined in ETSI GR ENI 018 [i.37], clause 4.4.2.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 69

6.2.6.2 Protection Against Bias

An ENI System shall incorporate methods to discover bias and discrimination against both individuals and groups of
objects, ideas, or people. Such methods may include statistical and/or probabilistic methods and, more generally, types
of data mining. Data mining methods include anomaly detection (i.e. identifying objects that are outliers or significantly
different from other elements in their class), association rule learning (i.e. discovering relationships between variables),
clustering (i.e. discovering similar groups and structures in a data set that are more similar to each other than to others in
the data set). Data mining should use both protected attributes (e.g. those affecting privacy, gender, religion, etc.) and
combinations of attributes that indirectly discriminate in some way. For example, the association rule:

 IF city == X and neighborhood == Y THEN perform Z (1)

appears fine. However, if it is combined with another rule that contains protected attributes, such as:

 IF city == X and neighborhood == Y THEN protected attribute is TRUE (2)

the conjunction of (1) and (2) is:

 IF city == X and neighborhood == Y and protected attribute is TRUE THEN perform Z (3)

which is clearly biased.

Many types of machine learning algorithms, such as neural networks, are too complex to understand how data is
computed in each stage of each iteration. This is because the nested non-linear structure of such systems makes it very
difficult to determine what information in the input data makes the system actually arrive at its decisions.

An ENI System shall be able to demonstrate that it uses a set of repeatable mechanisms as part of the machine learning
process to help mitigate bias. Exemplary techniques include:

• pre-processing, which is used to change the learning procedure of an ML model;

• post-processing, which treats the ML model as a "black box" and does not modify the learning algorithm or
training data;

• processing during learning (e.g. adding a discrimination-aware regularization term to the learning objective).

6.2.6.3 Adherence to Applicable Standards to Mitigate Bias

An ENI System shall be able to demonstrate adherence to appropriate standards for demonstrating that it can detect and
mitigate bias. The IEEE P7003 [i.20] standard enables creators to communicate to users, and regulatory authorities, that
best practices were used in the design, testing and evaluation of the algorithm(s) used in a product or system to attempt
to avoid bias, and that its results are fair. The standard describes specific approaches that allow users of the standard to
define how addressed and eliminated bias in the creation of their algorithmic system. For example, P7003 defines
methods for checking if all customer groups are sufficiently represented in the testing data.

As another example, the GDPR [i.16] describes a "right to explanation". When combined with the "data protection by
design" principles, the GDPR implies that data auditing methodologies designed to safeguard against algorithmic bias
throughout the entire product life cycle will likely become the new standard for promoting compliance in automated
systems.

6.2.7 Ethics

6.2.7.1 Introduction

The definition of ethics, as used in ENI, is "a normative philosophical discipline of how a person or object should act
towards others. It comprises three dimensions:

1) Consequentialist Ethics: an agent is ethical if and only if it considers the consequences of each decision and
chooses the decision that has the most moral outcome.

2) Deontological Ethics: an agent is ethical if and only if it respects obligations, duties, and rights appropriate
for a given situation.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 70

3) Virtue Ethics: an agent is ethical if and only if it acts according to a set of moral values."

An introduction to ethics is provided in ETSI GR ENI 018 [i.37], clause 4.5.

6.2.7.2 Methods to Ensure Ethical Decision-Making

Two approaches to creating ethical decision-making are individual [i.23] and collaborative [i.24] decision frameworks.
The issue of ethical dilemmas are present in both approaches. An ENI System shall analyse and provide feedback
and/or explanation of ethical decisions.

Agents used by an ENI System should use one or more mechanisms to enable their ethical decisions to explain their
actions. An ENI System should augment its learning and reasoning mechanisms with whitelist and blacklist rules. The
former are rules that explicitly allow a set of identified entities to be granted a set of particular privileges, while the
latter is the opposite (rules that explicitly disallow a set of identified entities to be granted a set of particular privileges).

An ENI System should use formal logic(s) to be able to mathematically prove hypotheses. In particular, it should define
rules that:

• shall be implemented (i.e. obligation, permission, and delegation): deontic logic;

• may be proved wrong by contrary evidence: defeasible logic;

• may modify context by expressing modality: alethic logic.

An ENI System may use either an individual or a collaborative ethical decision-making framework.

Individual ethical decision-making frameworks used by an ENI System shall enable agents to make ethical decisions,
either on their own or in consultation with other agents [i.22]. Similarly, an individual ethical decision-making
framework used by an ENI System shall be able to determine if an ethical decision made by another agent is in fact
ethical or not. Both of these properties shall use a formal cognition model for the agent (or set of agents), such as the
belief-desire-intention model [i.28]. In addition, an ENI System may use a logically separate mechanism to reconcile
ethics-based requirements with the proposed actions of an agent before those actions are implemented.

Collaborative ethical decision-making frameworks used by an ENI System shall form a network of trust to ensure that
ethical decisions are free of uncertain and malicious behaviour. Collaborative ethical decision-making frameworks used
by an ENI System may use a collection of specialized agents (e.g. some being deontological agents, and others being
consequentialist agents). In this approach, a learning mechanism should be used to develop strategies to compute a
collective decision by these agents. The learning mechanism may include a voting strategy, where different agents are
assigned different weights based on the type of the ethical decision to be made.

6.2.7.3 Adherence to Applicable Standards and Initiatives

There are a number of international standards that may be applicable for an ENI System. These include:

• IEEE P70xx Series (i.e. P7001-P7014) [i.27].

• GDPR [i.16].

• The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems [i.25].

There are several specific works in the IEEE P7000 series that involve Ethics.

IEEE P7000 [i.46] is dedicated to identify, analyse, and reconcile ethical concerns. An ENI System shall perform these
or similar efforts at the beginning of system and software life cycles. This affects both technologists and end-users.

IEEE P7001 [i.47] states that the operation of any intelligent system shall be transparent. An ENI System should make
as many of its decisions to be transparent. This enables end-users to ask why the intelligent system made the decision it
did, and helps trace internal processes that led to erroneous behaviour. More importantly, it helps users of the intelligent
system trust the intelligent system, since it is more understandable.

IEEE P7002 [i.48] defines requirements for a privacy-oriented process for ensuring that personal data are protected. An
ENI System shall make every effort to ensure private data are protected.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 71

IEEE P7006 [i.49] defines standards for personal data AI agents, ensuring that machine-to-machine decisions will be
made with appropriate transparency and explanations. An ENI System should apply this principle to all machine-to-
machine decisions that directly affect the end-user. In addition, an AI agent should be able to represent the needs of an
end-user (e.g. act as a proxy for the user in machine-to-machine decisions).

IEEE P7007 [i.50] standards formal communication for defining Ethical and Moral Theories. An ENI System should
use ontologies to realize ethical and moral features, since ontologies use formal logics, and hence, can be
mathematically proved. This is important for auditing and explanation. Similarly, IEEE P7008 [i.54] standardizes the
notion of ethically-driven "nudging" (i.e. a recommendation or action that influences the behaviour of a user). An ENI
System may use nudging to guide the end-user in ethical decision-making.

The GDPR [i.16] implies that AI systems should enable equitable societies by supporting human agency and
fundamental rights, and not decrease, limit or misguide human autonomy. A preferred way of doing this is to augment
pure learning and reasoning AI systems with different types of formal logics, including deontic, defeasible, and alethic
logic. This enables ethical decisions made by an ENI System to be explained mathematically:

• The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems has defined Ethically Aligned
Design [i.29]. This is a large document that defines a number of goals that an ENI System should implement.
This includes ensuring that an intelligent system should not infringe on internationally recognized human
rights.

• An intelligent system should prioritize metrics of well-being in the design and use of AI-based systems.

• An intelligent system should use appropriate practices, such as anonymization, to protect the discovery and use
of privacy attributes.

• An intelligent system shall provide informed consent for the user of personal privacy data.

• The designers, developers, and operators of an intelligent system should be responsible and accountable for
decisions made by the intelligent system.

• An intelligent system should operate in a transparent manner.

• An intelligent system should provide safeguards against its misuse.

• An intelligent systems shall be subject to applicable law.

• An intelligent system shall respect the rules of applicable government, industry, and other stakeholders in
which it operates. This includes obeying rules governing decisions that shall never be allowed to be performed
by an intelligent system.

• An intelligent system should similarly obey rules governing decisions that shall only be allowed to be
performed by an intelligent system in coordination with humans.

• All applicable parties shall have access to all data and information generated and used by an intelligent system.

• The logic and rules embedded in an intelligent system should be available for examination and subject to risk
assessments and testing.

• An intelligent system should generate audit trails recoding the facts and law supporting its ethical decisions.

• An intelligent system should enable third-party verification of ethical decisions that it has made.

6.2.8 The Assisted System

6.2.8.1 Overview

An important design principle of an ENI System is that changes need not be required to an Assisted System in order for
an Assisted System to make use of recommendations or commands sent to it by an ENI System (see requirement
[NFA1] in clause 5.4). This is true for all three classes of Assisted Systems (see clause 4.4.2).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 72

In general, if an Assisted System of any class is able to expose an API, then it may be able to take better advantage of
the capabilities of an ENI System. This is because this defines a direct mapping between the functionality of an Assisted
System and that of an ENI System. The API translation shall be done by an API Broker (see clause 6.4).

6.2.8.2 Class 1 and 2 Assisted Systems

Class 1 and 2 Assisted Systems are represented as individual systems. Interaction between them and an ENI System
may be done using APIs and/or the Designated Entity of an Assisted System.

If it is desired for an ENI System to interact with a set of class 1 or 2 Assisted Systems, then the mechanisms of Class 3
Assisted Systems, Option 1 (see clause 6.2.8.3.1) or Option 2 (see clause 6.2.8.3.2) shall be used, depending on the type
of communication that is required. More specifically, if each Assisted System has the same set of responsibilities and
capabilities, then Option 1 should be used; otherwise, Option 2 should be used.

6.2.8.3 Class 3 Assisted Systems

6.2.8.3.1 Single Class 3 Assisted Systems

This type of Assisted System, called option 1, was described in clause 4.4.2.5.2.2. In this interaction, an ENI System is
aware that it is providing recommendations and commands to a single Assisted System, but is not aware of the number
or type of control loops that the Assisted System has. There are two types of control loop arrangements, as shown in
Figures 6-3 and 6-4.

Figure 6-3: API of Single Class 3 Assisted System Directly Affect Closed Control Loop

In Figure 6-3, the API is sent directly to a Functional Block that contains a set of closed control loops. This type of
closed control loop enables decisions made by the control loop(s) to be sent to other Functional Blocks, thereby
affecting their behaviour (regardless of what type of task each Functional Block performs). The interactions between the
API module and Functional Block A, as well as between Functional Block A and the other Functional Blocks in this
figure, are not visible to the ENI System.

In contrast, Figure 6-4 shows that the API command(s) that affect the set of closed control loops in Functional Block A
are delivered indirectly. This option enables any intervening Functional Blocks (B and C in this example) to pre-process
the API command(s) for delivery to Functional Block A. Again, these interactions are not visible to the ENI System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 73

Figure 6-4: API of Single Class 3 Assisted System Indirectly Affect Closed Control Loop

The first option, shown in Figure 6-3, uses the API to direct the operation of the closed control loop(s), which in turn
direct the operation of other Functional Blocks. In contrast, the second option (shown in Figure 6-4) uses the API, in
combination with other Functional Blocks, to direct the operation of the closed control loop(s).

In both cases, care should be taken to ensure that the effects of using an API do not adversely effect the operation of the
Functional Blocks being affected. For example, this may not be appropriate for some real-time decisions due to the
communication and security constraints of using an API. This is because a delay in communication caused by using the
API (versus, for example, remote method invocation or other types of communication), as well as additional time
required to secure the communication between two entities that are not co-located, is likely not going to be acceptable
in certain scenarios.

6.2.8.3.2 Multiple Class 3 Assisted Systems

Figure 4-4 (in clause 4.4.2.5.1) describes the possibility of an ENI System managing multiple Assisted System. There
are two distinct cases:

• ENI is communicating with multiple Assisted Systems whose capabilities and responsibilities are identical.

• ENI is communicating with multiple Assisted Systems whose capabilities and responsibilities are not identical.

The first case applies to collaborative scenarios, such as peer-to-peer architectures, in which each Assisted System has
the same capabilities and responsibilities. This is shown in Figure 6-5.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 74

Figure 6-5: Multiple Collaborative Assisted Systems Controlled by an ENI System

In arrangements such as that shown in Figure 6-5, the ENI System need not know that it is communicating with a
specific Assisted System, since the capabilities and responsibilities of each Assisted System are identical.
Communication mechanisms may include peer-to-peer, individually sent mechanisms (e.g. broadcast), or using a bus.

The interactions between the API module in each Functional Block of each Assisted System in this figure are not visible
to the ENI System.

The second case applies to scenarios in which one or more Assisted Systems have different capabilities and
responsibilities. This is shown in Figure 6-6.

Figure 6-6: Multiple Disparate Assisted Systems Controlled by an ENI System

In Figure 6-6, some Assisted Systems are directly connected to an ENI System, while other Assisted Systems are only
connected to other Assisted Systems. However, an ENI System shall know the identity of each non-collaborating
Assisted System that the ENI System is directly connected to, if that Assisted System wants to receive
recommendations and/or commands.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 75

An ENI System shall be aware of the capabilities and responsibilities of each non-collaborating Assisted System that it
is directly connected to. For example, in a floating master architecture, at least one of the Assisted Systems shall be
designated as a master, and is responsible for coordinating and synchronizing data and commands to the other Assisted
Systems (known as members). If a member Assisted System is promoted to function as a master Assisted System, then
the ENI System shall be notified of this change. The ENI System shall interact directly with each master Assisted
System in such an arrangement.

An ENI System should be aware of the number of non-collaborating Assisted Systems that it is sending
recommendations and commands to. This helps the ENI System to keep track of the state of each non-collaborating
Assisted System that it is providing recommendations and commands to.

It may be possible for an ENI System to indirectly control Assisted Systems that it is not connected to (e.g. 2 and 3 in
Figure 6-6) through the set of Assisted Systems that it is directly connected to. However, the ENI System need not be
aware of such behaviour.

The interactions between the API module and each Functional Block of each Assisted System in this figure are not
visible to the ENI System.

6.3 Architectural Functional Blocks of the ENI System

6.3.1 ENI Functional Architecture with Reference Points

6.3.1.1 Introduction

The following clauses show the External and Internal Reference Points of the ENI Functional Architecture, along with
examples of how Administrative and Management Domains, as well as Control Loops, may be realized.

6.3.1.2 ENI Functional Architecture with External Reference Points

Figure 6-7 shows a more detailed Functional Block Diagram that contains all of its input External Reference Points (see
clause 7.3).

Figure 6-7: Functional Architecture with its Input Reference Points

Similarly, Figure 6-8 shows a more detailed Functional Block Diagram that contains all of its output External Reference
Points (see clause 7.3).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 76

Figure 6-8: Functional Architecture with its Output Reference Points

6.3.1.3 ENI Functional Architecture with Internal Reference Points

Figure 6-9 shows a detailed Functional Block Diagram that contains all of the ENI Internal Reference Points (see
clause 7.7).

Figure 6-9: Functional Architecture with its Internal Reference

6.3.1.4 ENI Functional Architecture with Administrative and Management Domains

Figures 6-10a and 6-10b show a detailed Functional Block Diagram of the ENI Functional Architecture with
Administrative Domains and Policy Management with exemplary external and internal domains, respectively. The
External and Internal Reference Points are the same as in the previous figures, but are now shown within the context of
an Administrative Domain.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 77

Figure 6-10a: Functional Architecture with An External Exemplary Domain

Figure 6-10b: Functional Architecture with Exemplary Internal Domains

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 78

6.3.1.5 ENI Functional Architecture with Control Loops

Figure 6-11 shows an exemplary mapping of a simple closed control loop (as described in ETSI GR ENI 017 [i.36].

Figure 6-11: Functional Architecture with Exemplary Control Loops

Figure 6-11 specifies that all external entities that have the ability to send Policy Rules to, and receive Policy Rules
from, the ENI System use dedicated External Reference Points to do so.

The following exemplary description is done in a somewhat serial flow for ease of understanding. This does not mean
that the actual processing done is serial. One reason that a bus is used is to enable complex communication to occur
between different internal Functional Blocks.

A closed control loop, as described in ETSI GR ENI 017 [i.36], consists of the following functions:

• A desired input, or goal.

• A function that compares the desired input and the feedback (transduced adjustment in [i.36], Figure 4.3.2-1).

• A controller.

• A target system.

• A transducer.

In Figure 6-11, the above five functions are represented by one or more ENI Functional Blocks (or signals from them).
More specifically:

• The goal (which every closed control loop has) is represented in its final form in the Model-Driven
Engineering Functional Block.

• The function that compares the desired input and feedback is contained in the Controller in this example.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 79

• The Controller is represented by the four Functional Blocks (Knowledge Management, Context-Aware
Management, Cognition Management, and Situational Awareness).

• The Target System is represented by the Model-Driven Engineering and Policy-Based Management Functional
Blocks.

• The Transducer is represented by the Situational Awareness, Model-Driven Engineering, and Policy-Based
Management Functional Blocks.

The following explains the operation of a generic closed control loop using Figure 6-11.

The closed control loop is first supplied a goal to achieve. This goal shall be supplied by ENI, though it may have
originated from the Assisted System. If the former, then that goal is stored in the Knowledge Management Functional
Block for use by other Internal Functional Blocks. If the latter, then the goal appears as input data, and hence, is
ingested and normalized, followed by being stored in the Knowledge Management Functional Block. In either case, the
goal is represented in the Model-Driven Engineering Functional Block.

Input data to the closed control loop may come from one or more of the five main sources (Infrastructure, OSS- and
BSS-like functionality, Applications, Orchestrator, and User). All input is transmitted to the API Broker, which then
communicates the data using one (or more) of the designated ten input External Reference Points. Each input first goes
to the Data Ingestion and then to the Normalization Functional Blocks. At this point, the data is in a format that can be
understood by the six Internal ENI Functional Blocks. The six Internal Functional Blocks are notified that new data has
been ingested and normalized via a message delivered by the Semantic Bus [i.30].

The function of the Controller is played by the Knowledge Management, Context-Aware Management, Cognition
Management, and Situational Awareness Functional Blocks. Briefly, the Knowledge Management Functional Block is
responsible for representing data, information, and knowledge about the target system. Once the ingested data is
represented, all interested consumers are notified of this via the Semantic Bus.

The Context-Aware Management Functional Block enables an ENI System to adapt its behaviour according to changes
in context. For example, the ENI Internal Functional Blocks may collectively decide that a more efficient way to
achieve a goal is to use different operations and processes given new contextual information. Current and historical
context may be used, since both provide different information when doing statistical analysis and inferencing. Once
context data has been integrated with the ingested data, all interested consumers are notified of this via the Semantic
Bus.

The Cognition Management Functional Block is responsible for ensuring that an ENI System is achieving its end-to-end
goals as efficiently as possible. More specifically, this includes understanding how ingested data and information
interact with and are affected by the current (and possibly historical) context(s). This enables the Cognition
Management Functional Block to change existing knowledge and/or add new knowledge. Outputs from this Functional
Block are then made available to all interested consumers via the Semantic Bus.

The Situation Awareness Functional Block enables an ENI System to understand what has just happened, what is likely
to happen, and how both may affect the goals that an ENI System is trying to achieve. Hence, the fundamental part of
any closed control loop that makes decisions will use the facilities of this Functional Block. Outputs from this
Functional Block are then made available to all interested consumers via the Semantic Bus.

As the Controller completes its processing, the Knowledge Management Functional Block stores updated knowledge
representations that all Internal Functional Blocks may use. This includes, but is not limited to, adjustments to
information and data models, adjustments to ML and statistical models, and generation of other relevant information
(e.g. heuristics).

The Model-Driven Engineering Functional Block is responsible for taking the decision(s) from the Controller and
translating it to recommendations and/or commands. This process is made scalable by converting recommendations and
commands to a common structural form that is contained in one or more Policy Rules. Any combination of intent,
imperative, and declarative Policy Rules may be used to properly represent the recommendations and/or commands.
This output is fed directly to the Policy Management Functional Block, but parts of the output may be made available to
all interested consumers via the Semantic Bus.

The Policy Management Functional Block is responsible for delivering the output of the closed control loop, which is a
set of Policy Rules. Policy Rules may contain recommendations or commands, and multiple Policy Rules may be
communicated to the Assisted System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 80

Recommendations and/or Commands are then sent to the Denormalization and Output Generation Functional Blocks,
where they are sent to the Assisted System via the appropriate set of External Reference Points.

6.3.1.6 ENI Functional Architecture with Domains and Control Loops

Figure 6-12 shows an exemplary mapping of ENI with internal domains that are part of a closed control loop.

Figure 6-12: Functional Architecture with Exemplary Domains and Control Loops

Figure 6-12 is a combination of Figure 6-10 and Figure 6-11. Inputs and Outputs to ENI are in Domain 1. Inputs are
accepted by the API Broker and sent using the appropriate ENI External Reference Point to the Data Ingestion
Functional Block. Similarly, outputs from ENI are send from the Output Generation Functional Block to the API
Broker, where they are translated into an appropriate form that the consuming external entity can use.

Domains 2 and 3 make up the closed control loop. ENI may implement a closed control loop in one or more
management domains. In this example, the parts of the closed control loop that observe, orient, analyse, and plan ENI
actions is in Domain 2, while the MDE and policy generation portions are in Domain 3.

Details of control loops are found in ETSI GR ENI 017 [i.36].

6.3.2 Data Ingestion Functional Block

6.3.2.1 Introduction

This clause describes the processes associated with ingesting different data from various data sources. Once this is
complete, data is then sent to the Normalization Functional Block, which translates the data into a common format for
further processing by the other Functional Blocks of the ENI System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 81

A network has different domains (e.g. RAN/Fixed Access, Transport, and Core). Each domain has its specific functions
and services, as well as specific APIs. In a case where the ENI System helps with a localized network function in a
specific domain (e.g. optimizing resource allocation at the RAN/Fixed Access), the ENI System may interact with the
interfaces of the Assisted Systems of that domain, and may collect data from that domain only. In a more likely case,
where the ENI System helps with a cross-domain function (e.g. end-to-end network service assurance), the ENI System
may interact with multiple domains of the network. In either case, this shall be done using External Reference Points,
and may use the API Broker to insulate an ENI System from having to change its functionality to accommodate the
characteristics and behaviour of different APIs from different Assisted Systems.

These characteristics give rise to the following requirements:

• ENI shall provide the ability to ingest structured, semi-structured, and unstructured data from different data
sources. This may be efficiently implemented using a multi-agent architecture.

• ENI shall also provide the ability to ingest data in streaming and batch mode, as well as on-demand. In
addition, ENI shall provide the ability to contextually change the sources of data to be ingested. In all cases,
the data collected shall be normalized to a uniform data format.

• Data Ingestion may be realized as a Functional Block that is separate from the Data Normalization Functional
Block. This adheres to the Single Responsibility Principle [i.9], and enables a more scalable and robust system
to be designed and built.

6.3.2.2 Motivation

Each domain has its specific functions, services, APIs, and may run on its specific time cycle. Thus, the data ingestion
Functional Block shall be able to operate on different types of domain-specific data. Similarly, the processing
operations applied to the ingested data are also a function of what Functional Blocks will use the data created from this
Functional Block, as well as the nature of functions performed in that domain. The normalization of the time granularity
may also be needed, where up/down sampling and interpolation may be applied.

The ENI System shall collect data based on the tasks it needs to perform (e.g. configuration vs. monitoring changes) as
well as the nature of the analysis being done (e.g. as congestion is being controlled, different points in the network and
different types of data may need to be monitored). The tasks are defined by either the Assisted System (or its
Designated Entity) or an ENI System, typically in response to externally defined goals and policies. In the case when
the tasks are defined by the Assisted System (or its Designated Entity), the Assisted System (or its Designated Entity)
shall send a request of performing such an action to the ENI System. In the case when the tasks are defined by an ENI
System, the ENI System shall send appropriate requests to the Assisted System (or its Designated Entity). Functional
Blocks of ENI (e.g. policy management, or cognition management, or situation awareness management) interpret the
requirements of each task and are then responsible for defining the types of data, when, and how they are collected.

6.3.2.3 Function of the Data Ingestion Functional Block

6.3.2.3.1 Introduction

If the Data Normalization Functional Block is not present, then the Data Ingestion Functional Block shall perform all
required actions that would have been performed by the Data Normalization Functional Block. Otherwise, the following
clauses define the actions that may be performed in the Data Normalization Functional Block.

The processing may include learning and inferring from the available raw data of one or more domains; once these data
are analysed, the processing shall then decide on what knowledge is forwarded to other Functional Blocks of ENI. The
processing may also benefit from Model-Driven Engineering (MDE) mechanisms, since modelled data define how the
data should appear and behave in an error-free state. This is discussed more in clause 6.3.8.

In certain cases, the processing may save the raw form of the ingested data for further use. For example, many types of
trend processing require access to raw data. In most cases, the processing function may save the processed form of the
data; this is both faster and more efficient. The choice of whether to save the raw or processed form of the ingested data
is dependent on the current context (see clause 6.3.5) and/or the current and anticipated situations (see clause 6.3.7).
The Situation Awareness Functional Block may also define a set of Policy Rules that take action based on, for example,
the type of data or the intended Functional Block that will use the ingested data. The Cognition Management Functional
Block (see clause 6.3.6) may aid in the understanding of ingested data.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 82

The processing may include aggregation and correlation functions (e.g. to reduce dimensionality) as well as machine
learning (e.g. this may yield faster results by dealing with significantly smaller data sets, and enable what-if analysis
and other game-theoretic algorithms to be used). In such a case, the resulting normalized data may also contain
knowledge of a specific domain, or multiple domains.

The particular set of processing functions required is dependent on the current context (see clause 6.3.5) and/or the
current and anticipated situations (see clause 6.3.7). The Situation Awareness Functional Block may also define a set of
Policy Rules that take action based on, for example, the type of data or the intended Functional Block that will use the
processed data. The Cognition Management Functional Block (see clause 6.3.6) may augment the meaning of ingested
data (e.g. by adding metadata).

6.3.2.3.2 Data Filtering

Data filtering is the removal of unnecessary or unwanted information. This is done to simplify and possibly increase the
speed of the analysis being performed. This is similar to removing the "noise" in a signal. Filtering is generally (but not
always) temporary - the complete data set is kept, but only part of it is used for the calculation.

Filtering requires the specification of rules and/or business logic to identify the data that shall be included in the
analysis. Examples include outlier removal, time-series filtering, aggregation (e.g. constructing one data stream from
pieces of other data streams, such as merging name, IP address, and application data), validation (i.e. data is rejected
because it does not meet value restrictions), and deduplication.

6.3.2.3.3 Data Correlation

Data correlation refers to an association or relationship between data. It expresses one set of data in terms of its
relationship with other sets of data. For example, the number of upsells to a higher class of service may increase due to
targeted advertising, and may increase even more when offering free time-limited trials. Another example is collecting
the complete set of data related to a subscriber. These data are usually collected using different mechanisms, and hence,
are fragmented among different collection points. Data correlation can use rules and/or business logic to collect the
scattered data and combine it to improve analysis. Data correlation is the first step in gaining increased understanding of
relationships between data and their underlying objects.

6.3.2.3.4 Data Cleansing

Data Cleansing is a set of processes that detect and then correct or remove corrupt, incomplete, inaccurate, and/or
irrelevant data. Data cleansing typically is performed on batches of data. It differs from data validation in that data
validation is performed at the time of ingestion, whereas data cleansing is performed later.

Data cleansing solutions may also enhance the data, either by making it more complete by adding related information or
by adding metadata. Finally, data cleansing may also involve harmonization and standardization of data. For example,
abbreviations may be replaced by what they stand for, and data such as phone numbers may be reformatted to a
standard format.

6.3.2.3.5 Data Anonymization and Pseudonymization

Data Anonymization is the process of either removing or encrypting information that can be used to identify people
from a data set. For the purposes of the present document, the Anonymization process is defined as irreversibly severing
data that can be used to identify a person from the data set. Any future re-identification is no longer possible.

Data Pseudonymization is the process of replacing information that can be used to identify a person with one or more
artificial identifiers (i.e. pseudonyms). For the purposes of the present document, the Pseudonymization process is
reversible by certain trusted entities, since the identifying data was not removed, but rather substituted with other data.

6.3.2.3.6 Data Augmentation

For the purposes of the present document, data augmentation is the process of adding other types of data to the existing
data set to enrich it in some way. Two examples are the addition of metadata and the addition of ontological data to a
data set to increase the understanding of the data. For example, metadata consists of additional information that describe
or prescribe the characteristics, behaviour, and operation of the data. Ontological data is logic-based data that has one or
more relationships to the original data that help explain those data. For example, ontological data could provide
linguistically related information to provide additional information about the data.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 83

6.3.2.3.7 Data Labelling and Annotation

6.3.2.3.7.1 Introduction

Data labelling is the process of adding corresponding class labels to data based on real information provided by the
Assisted System (or its Designated Entity). The class labels represent the state or attribute of the data. When used in
machine learning, the labels show the answer that the machine learning model should predict. For example, for a fault
detection case, labels could identify normal or abnormal traffic types in a traffic identification case. The labelled data is
used in model training with supervised ML algorithms.

Labelling is typically done by adding tags and/or metadata to the ingested data. Data labelling is more properly called
data annotation when metadata is used, as the metadata is more descriptive and/or prescriptive than a simple label.

6.3.2.3.7.2 Types of Data Annotations

The following is a non-exhaustive list of the most common types of data annotations used.

Text Categorization. This type of annotation is used to assign text to predefined categories. For example, different
parts of a document could be assigned different topics (see clause 6.5.3.5) for transmission using the Semantic Bus
(e.g. a parent topic could be called congestion data, with two sub-topics, called domestic and international congestion
data).

Entity Annotation. Named Entity Recognition (NER) (see clause 6.3.5.4) is the most common form of entity
annotation. NER classifies text according to predefined entities in an information or data model, and/or in an ontology.
Examples include finding the names of people, organizations, places, and equipment, and adds facts and meaning to
each entity occurrence. This then allows Named Entity Linking, where two different named entities that occur in
different parts of a document are associated with each other. For example, a Service can be associated with a Provider,
or a type of equipment associated with an Internet Gateway.

Image Annotation. This uses one or more processes to target an area of interest in the image. For example, a box can
be placed on an image to identify an object. Another example is assigning each pixel a value corresponding to its
meaning and/or importance in recognizing the image. This helps a machine learning model recognize the annotated area
as a distinct type of object, and can be used for autonomous vehicle guidance, facial recognition, and even to block
sensitive or inappropriate content.

Video Annotation. Similar to image annotation, this adds bounding boxes, polygons, or other identifying tags to video
content. This can be done using a video annotation tool, or more typically, on a frame-by-frame basis, where frames are
subsequently stitched together to help track the movement of the annotated object. This can be used for developing
computer vision models for object tracking and similar tasks.

Linguistic Annotation. This type of annotation is used in each of the parsers (or compilers) present in the ENI System
(e.g. in the Situational Awareness, MDE, and Policy Management Functional Blocks). It tags the words in a piece of
content with their grammatical meaning (e.g. verb, verb phrase, and proper noun).

Semantic Annotation. Semantic annotation adds meaning to annotated data. Machine learning models use semantically
annotated data to learn how to categorize new concepts, as well as to infer other relationships to better categorize and
annotate other parts of the text, image, or video. ENI shall use this type of annotation to form hypotheses about entities
found as well as their behaviour.

6.3.2.3.7.3 Labelling Accuracy and Labelling Quality

Data labelling accuracy measures how close the labelled features match real-world data, and is independent of the type
of data and model that is being annotated. Data labelling quality measures the accuracy of the labels across the entire
dataset. For example, it examines whether each label works the same and provides the same result everywhere that it
occurs.

Annotation shall require context. This enables the annotation system to choose the correct meaning for a label having
multiple meanings. For example, the word "bank" could mean a financial institution, to count on something being true,
a part of a river, or an aerial maneuver. It also enables type-of relationships (e.g. red is a type of colour, where red is a
hyponym and colour is a hypernym); this enables substitution of such relationships to be found.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 84

Annotation should require situation awareness. This enables the relevance of the data that is being labelling to be
defined based on the goals of the situation (see clause 6.3.7). For example, if telemetry says that 17 packets were
dropped, then the action depends on what type of packets were dropped, along with what protocol, when, and where.
Continuing the example, if the dropped packets were transmitted using FTP, that protocol will take care of recovering
and transmitting them. In contrast, if the dropped packets were control or management packets, that represents a more
serious problem, and the system needs to retransmit them (perhaps using a "guaranteed delivery" message channel as
described in clause 6.5).

6.3.2.3.7.4 Semantic Annotation

One of the most reliable and efficient ways to implement semantic annotation is to use neural networks. This is because
semantic annotation can be seen as a classification problem, where the correct meaning of the input is discovered using
various machine learning mechanisms. The basic problem is that there may be a large number of features that contain
information, but it is difficult for the classifier to properly combine them. In addition, a particular input may be
associated with more than one label. This is why neural networks are preferred to other simpler classification models
(e.g. random forest), because neural networks are better suited to handling large number of features and can recognize
non-linear combinations.

There are many cases where obtaining labelled data is expensive, even for text classification. Active learning may be
used to minimize the amount of labelled data that is required to build an accurate model for machine learning (see ETSI
GR ENI 018 [i.37]). The representation used to represent the content of a document is crucial.

NOTE: Release 4 (see clause 9) will compare vectorized representations based on word frequencies
(e.g. bag-of-words), word embeddings (e.g. words are mapped into a vector space where the distance
between words in the space is related to the syntactic ad semantic features of the words; and example is
word2vec), and document-level mechanisms (e.g. bi-directional encoder representations from
transformers, or BERT) to determine which (if any) of these approaches could be used effectively in
active learning.

6.3.2.4 Operation of the Data Ingestion Functional Block

6.3.2.4.1 Introduction

Different data sources use different languages and protocols to communicate their data. One way to accommodate this
is to use a set of agents that each understands a particular data source and the data that it sends. This approach is shown
in Figure 6-13. The functional block diagram shown in Figure 6-13 does not prescribe an implementation. Rather, it
describes the high-level Functional Blocks that are needed to implement the needs of data ingestion. Different
implementations may need to add other Functional Blocks to meet their particular operational requirements.

Figure 6-13: Data Ingestion Operation

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 85

Figure 6-13 shows a preferred method of operation of the Data Ingestion Functional Block. The bottom three levels
represent agents. Level 1 is the agent having the highest level of abstraction, while level 2 is a set of agents that are
either controlled by the corresponding level 1 agent or represent functionality required by the corresponding level 1
agent. Similarly, level 3 represent a set of agents that are either controlled by or represent functionality required by the
corresponding level 2 agent. This is an example; there is no requirement to implement an agent hierarchy or a hierarchy
that has a fixed number of levels for an ENI Agent System. Each agent may take on zero or more roles, and each role
may be assigned a set of functions to a given data source. For example, Role A may be assigned the ability to perform
any configuration operation required for monitoring, while Role B is assigned the ability to perform traffic engineering
operations.

The advantages of this type of architecture include:

• Flexibility: the implementation may change (e.g. lower levels of agents may change) without affecting the API
(built from more abstract levels).

• Extensibility: new levels of agents may be added or removed to suit the needs of the application.

• Manageability: instead of having to manage individual agents, the management focus is abstracted to
managing roles.

6.3.2.4.2 Telemetry Processing

6.3.2.4.2.1 Cognitive and Situation-Aware Directed Telemetry Gathering

One of the advantages of using an adaptive closed control loop (see ETSI GR ENI 017 [i.36]) is to be able to easily
change the goal(s) and/or the data being analysed by the control loop. In this case, the Cognition Management
Functional Block of ENI (see clause 6.3.6) shall be responsible for relating the actions taken by the ENI System to the
set of end-to-end goals that the ENI System is trying to satisfy. The Cognition Management Functional Block works
closely with the Situational Awareness Functional Block to understand the meaning and significance of data and
behaviour that is being analysed. It shall build plans that describe various mechanisms that can be performed to move
the current state of the entity being monitored to its desired state.

Both may postulate theories as to how the system being monitored, and/or its environment, are behaving. Such theories
may necessitate telemetry, as well as one or monitoring points, to change in order to prove these theories.

6.3.2.4.2.2 Detecting Anomalies

An anomaly may be defined as "the measurable consequences of an unexpected change in state of a datum, or set of
data, which is outside of its local or global norm".

There are several approaches to detecting anomalies. Uni-variate anomaly detection approaches process the different
telemetry parameters independently. In contrast, multi-variate anomaly detection approaches take into account possible
correlations between the different parameters, allowing contextual anomalies to be detected:

NOTE: The following will be examined in Release 4 (see clause 9) of the present document.

• Statistical. This uses historical data to model the expected behaviour of a system.

• Probabilistic. Similar to statistical, but uses probabilities or fuzzy algebra to do the comparison.

• Distance-based Metrics. This uses the distance between a newly measured datum and previous data, and
defines the datum as an anomaly if the distance is larger than a pre-defined value.

• Pattern Matching. This compares each new measurement against a database of known anomalies, and
classifies measurements that are more similar to known anomalies than to correct data as anomalies.

• Structural Matching. This compares the structure of the data to known data fields from models and/or
ontologies. If the data matches correct or anomalous data, then a corresponding decision is made.

• Clustering. This projects measured data into a multi-dimensional space. Measurements that do not belong to,
or are too far from a cluster, are classified as anomalies.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 86

• Ensemble Matching. This approach uses a number of different algorithms to analyse each measurement, and
then defines a collective vote from each method.

• Machine Learning. Different types of machine learning algorithms can be used. For example, deep neural
networks (e.g. LSTM, or Long Short-Term Memory, which are a type of recurrent neural network capable of
learning order dependence in sequence prediction problems) could be compared against autoencoders (e.g. a
type of neural network that can be used to learn a compressed representation of raw data, which learns a
condensed representation of the input data) and transformers ((see ETSI GR ENI 018 [i.37]).

6.3.2.4.2.3 Storing Telemetry Information

Telemetry information shall be gathered as directed by the ENI System. More specifically:

• ENI Policies shall be used to define what telemetry information is desired, where it shall be collected, and the
frequency of collection.

• ENI Policies may specify one or more collection methods in prioritized order.

• Raw telemetry information shall be ingested using the Data Ingestion and Normalization Functional Blocks
through the appropriate ENI External Reference Point (see clause 7.3).

• Telemetry information that is deemed valuable for making future decisions should be stored in an appropriate
repository (see clause 6.3.4.5). Stored telemetry information may be anonymized or pseudonymized as
appropriate, and should be compressed.

6.3.2.4.2.4 Changing Telemetry Gathering using Policies

The ENI System should use an adaptive and cognitive control loop (see clause 6.3.4 and ETSI GR ENI 017 [i.36]). This
enables its actions to reflect changes in user needs, business goals, and environmental conditions. As these elements
change, the ENI System may need to gather new telemetry (e.g. to verify hypotheses made). All requests to gather
telemetry should be made using ENI Policies.

6.3.2.4.3 Use of Metadata

The Data Ingestion Functional Block should use metadata to describe and prescribe processing that should be done on
different types of ingested data. Metadata may be used in identifying the type of ingested data. Since metadata may
contain descriptive as well as prescriptive information, metadata may also contain important information that defines
which processing operations should be executed on the ingested data before it is sent to the next Functional Block. This
method may be used with any of the methods in clauses 6.3.2.4.4, 6.3.2.4.5 and 6.3.2.4.6.

6.3.2.4.4 Use of Structure, Pattern, and Feature Matching

The same data may be organized and/or formatted in different ways. It may also be ingested where the individual
elements of the data are out of order. Therefore, the Data Ingestion Functional Block should use the following set of
related model-based approaches to classify and process ingested data that has not yet been identified.

Pattern matching matches groups of objects that occur together. For example, congestion information requires
information on at least two endpoints and the link that they use to communicate.

Feature matching concentrates on a set of attributes that together constitute a distinguishing characteristic of an object.

Structural matching uses the structure of a set of elements as a baseline for comparing the structure of the ingested data.
There are several variations. The simplest treats the datum as an object, and searches for an equivalence match to one or
more objects in the ENI information or data models. Here, an equivalence match assigns a probability that the ingested
datum is the same as that matched in the ENI model (e.g. 100 % if its attributes are the same, and 0 % if none of its
attributes are the same). Object matching extends the above to sets of objects, where the typical definition of an
equivalence match is that some minimum percentage of each object matches.

The above two variations can each be enhanced by considering the relationships of the object(s) representing the
ingested data to the relationships in the ENI model. This provides additional confidence of a match, because it provides
an indication that the behaviour of the ingested data is likely to be the same as the behaviour of the modelled object(s).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 87

The Data Ingestion Functional Block should use one or more of these methods to identify ingested data before it is
passed to subsequent ENI Functional Blocks. This method may be used with any of the methods in clauses 6.3.2.4.3,
6.3.2.4.5 and 6.3.2.4.6.

6.3.2.4.5 Use of AI-based Mechanisms

There are a number of different AI-based mechanisms that can be used to identify ingested data. This approach is
typically used in situations where large amounts of real-time data are collected (e.g. optical networks or autonomous
driving systems) or when fine-grained analysis is required to identify data. It may be thought of as an extension to
structural, pattern, and feature matching, where all three are used to identify learned structures that can be matched.
Therefore, the Data Ingestion Functional Block should use appropriate AI-based approaches to classify and process
ingested data that has not yet been identified.

The advantage of AI-based mechanisms is that strong correlations and similarities between data are inherently included
as part of the algorithm. This can extend to data ingested from different sources and regions. Data-fusion-assisted
telemetry enables various data fusion algorithms to be used to analyse ingested data and find matches to known objects
or to develop hypotheses as to what known objects are the most similar to ingested data based on their similarity.

For example, optical systems provide optical and digital information. Both of these domains require special systems for
transmitting and interpreting data (e.g. fibre amplifiers and digital signal processing algorithms). Correlation between
data transmitted optically and received digitally can improve measurements. As another example, signals from different
channels share the same fibre and travel through the same equipment in a Dense Wavelength-Division Multiplexing
system. Hence, these signals experience similar processing, which once again yields correlations between each other
exist. In all of the above cases, fusing information from these different sources provides more accurate monitoring.

More importantly, machine learning models can be made stronger by using an ensemble approach. This combines a set
of relatively simple learning models to produce a much stronger learning model.

Exemplary mechanisms include:

• Direct concatenation of knowledge from different sources to produce a feature vector. This method is simple
and useful as long as the number of features is small.

• Stage-based learning, where the identification of the data is divided into a set of stages, with each stage using
an algorithm (that is possibly different from other stages) that is specific to that type of processing. This type
of learning has the advantage of using many open source boosting and bagging algorithms.

• Deep neural networks, which have the advantage of more easily identifying new features that can then be
analysed using another system.

The Data Ingestion Functional Block should use one or more of these methods to identify ingested data before it is
passed to subsequent ENI Functional Blocks. This method may be used with any of the methods in clauses 6.3.2.4.3,
6.3.2.4.4 and 6.3.2.4.6.

6.3.2.4.6 Use of Formal Logic and Ontologies

If semantic information is known about the ingested data, then the Data Ingestion Functional Block should use formal
logic and ontologies to identify and process ingested data. This method can be illustrated using two different
approaches.

Many domains provide inherently relational information. In this case, probabilistic methods can be used to process the
relational data; this is called Statistical Relational Learning (or sometimes, Probabilistic Logic Models). The advantage
of this approach is that it can easily and succinctly represent probabilistic dependencies among the attributes of different
related objects, which generates a compact representation of learned models. This is done by combining probability
theory with first-order logic to represent the rich structure of the data.

Another method is inductive logic programming. This exploits contextual knowledge to constrain the search space
while learning. The contextual knowledge consists of a set of facts and a small set of rules. Learning then consists of
first, developing hypotheses by using the contextual knowledge to prove all positive examples; this is then refined so
that no negative examples are proven. This method is often used to handle noisy data by maximizing the number of
positive examples proved while minimizing the number of proved negative examples. It may be combined with fuzzy
logic and/or probability theory.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 88

This method may be used with any of the methods in clauses 6.3.2.4.3, 6.3.2.4.4 and 6.3.2.4.5.

6.3.3 Data Normalization Functional Block

6.3.3.1 Introduction

The Data Normalization Functional Block receives ingested data from the Data Ingestion Functional Block, which
translates the data into a common format for further processing by the other Functional Blocks of the ENI System.

These characteristics give rise to the following requirements:

• ENI shall provide the ability to transform structured, semi-structured, and unstructured data from different data
sources into a single common, uniform format.

• ENI shall use a set of models, including data types and data structures, to perform the transformation into a
unified data format.

• Data Normalization may be realized as a Functional Block that is separate from the Data Ingestion Functional
Block. This adheres to the Single Responsibility Principle [i.9], and enables a more scalable and robust system
to be designed and built.

6.3.3.2 Motivation

Each domain produces data of interest to ENI using its own processes. Each such process may use different
programming languages and protocols, which means that the same data may be received in completely different
formats. For example, the same data about a customer may be processed using relational databases and directories; if
these customer data are both ingested by the Data Ingestion Functional Block, then the data comprising the customer
will be organized differently and may contain different information (e.g. a relational database is easier to query and can
store richer data than a directory). If these differences can be identified early in the data acquisition process, then the
knowledge processing process is greatly simplified.

In this example, recognizing that the object is a Customer, even though the data is different, may be done by comparing
the ingested data with expected data from the model. For example, the Customer object in an information model has a
set of mandatory (and optional) attributes, as well as relationships to other objects. It may also have metadata that
disambiguates this instance of a Customer from all other instances of a Customer. The normalization process arranges
and formats the ingested data that facilitates the comparison and recognition of these and other common characteristics
and behaviours.

6.3.3.3 Function of the Data Normalization Functional Block

This clause explains the importance of data normalization.

Data normalization translates the data to a standardized form. This includes the use of pre-defined data structures, where
data is converted to a standard format that uses a standard encoding. In the case of an ENI System, this is facilitated
using its set of models. In ENI, models represent objects as templates; this includes defining a set of mandatory and
optional attributes, operations, relationships, and other standard features. This enables ingested data to be compared to
the same data that is error-free. This is discussed more in clause 6.3.3.4.

A normalized form is critical for the operation of other ENI Functional Blocks. A normalized form means that every
ENI Functional Block may be designed using knowledge about the characteristics and behaviour of pertinent data and
objects. Otherwise, each ENI Functional Block would have to accommodate data that could be represented in different
formats using different data structures.

6.3.3.4 Operation of the Data Normalization Functional Block

6.3.3.4.1 Introduction

The principles of normalization, as used in relational calculus, are a good analogy for the operation of the Data
Normalization Functional Block. This analogy is explained in clause 6.3.3.4.2, followed by an example of how data
normalization may be used in machine learning in clause 6.3.3.4.3. Finally, clause 6.3.3.4.4 relates these concepts more
specifically to the needs of ENI.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 89

If the Data Ingestion Functional Block is not present, then the Data Normalization Functional Block shall perform all
required actions that would have been performed by the Data Ingestion Functional Block. Otherwise, the following
clauses define the actions that may be performed in the Data Normalization Functional Block.

6.3.3.4.2 Database Design Analogy (informative)

Normalization is a relational calculus design technique that organizes tables in a manner that reduces redundancy and
dependency of data. This is done by dividing larger tables to smaller tables and linking the tables using relationships.
This ensures that a table is about a specific topic, and that only supporting topics are included. For example, a table that
contains information about sales people, support technicians, and customers serves several purposes:

• Identify sales people in an organization.

• Identify support technicians in an organization.

• Identify all customers of an organization.

• Identify which sales people call on which customers.

• Identify which support technicians help which customers.

• Identify which sales people rely on which support technicians.

There are several advantages of having a highly normalized data schema:

• Increased consistency. Information is stored in one place only, reducing the possibility of inconsistent data.

• Single purpose. By limiting a table to one purpose, the number of duplicate data contained within the database
is reduced; this eliminates many issues encountered when the database is modified.

• Simplify queries. Normalizing a database identifies different dependencies between data, and makes querying
more efficient.

• Easier object-to-data mapping. Highly-normalized data schemata are closer conceptually to object-oriented
schemata because the object-oriented goals of promoting high cohesion and loose coupling between classes
result in similar solutions.

There are five standardized forms of data normalization. Brief descriptions of the first three are:

• An entity type is in First Normal Form when all entities have a unique identifier, and when each column does
not contain any repeating groups of data (i.e. each table cell has a single value, and each record is unique) or
composite fields.

• An entity type is in Second Normal Form when it is in First Normal Form and when all columns that do not
contain unique identifiers depend on the entire unique identifier(s), and not just a part of the identifier.

• An entity type is in Third Normal Form when it is in Second Normal Form and when each column that is not
part of the unique identifier does not depend on another column that is not part of the unique identifier (i.e.
changing a non-key column does not cause other non-key columns to change - this is called a transitive
functional dependency).

The primary disadvantage of normalization is slower reporting performance. This is accomplished through using a
separate, denormalized data model.

6.3.3.4.3 Normalization for Machine Learning

A neural network may be trained by supplying data and then comparing the expected output to the true output of the
network. The model parameters may then be updated using a number of algorithms. For example, gradient descent
updates the parameters of the model in the direction that minimizes the difference between the expected (or ideal)
outcome and the true outcome. There are different types of gradient descent; however, all of them scale the magnitude
of the parameter update by a learning rate. This rate ensures that the parameter is not being changed too drastically,
which can cause the update to overshoot and fail to find the optimal value. The normalization of the input data to a
standard scale enables the network to more quickly learn the optimal parameters for each input node. It also reduces
complex computational problems associated with floating point number precision.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 90

In a neural network, changing one weight affects subsequent layers, which then affect subsequent layers, and so on.
This means changing one weight can affect activations in subsequent layers in complex ways. By ensuring the
activations of each layer are normalized, the overall loss function topology is simplified. This is especially helpful for
the hidden layers of the network, since the distribution of unnormalized activations from previous layers will change as
the network evolves and learns more optimal parameters.

One method for doing this is called batch normalization. This controls the magnitude and mean of the activations
independent from all other layers. Other methods include weight normalization (i.e. instead of normalizing activations
in the intermediate layers of neural networks, the weight vectors of a neural network are reparameterized to enable
optimization to converge more quickly); layer normalization (i.e. instead of normalizing the input features across the
batch dimension as in batch normalization, it normalizes the inputs across the features); group normalization (i.e. the
mean and standard deviation over groups of channels for each training example).

6.3.3.4.4 Applying Normalization to ENI

In ENI, the Normalization Functional Block uses modelled information (e.g. objects, attributes, operations, and
relationships) to standardize the information being sent to other ENI Functional Blocks. ENI may use a number of
different mechanisms, including those described in the previous two clauses, to identify and convert data into model
elements (e.g. classes, attributes, operations, and relationships). Metadata may also be used to describe and prescribe
how normalization is performed; this may help reversing the process when ENI needs to output recommendations and
commands to the Assisted System (and/or its Designated Entity). In order to do this, accumulated knowledge from other
ENI Functional Blocks (included predefined model information) shall be made available to the Normalization
Functional Block, as shown in Figure 6-14. The functional block diagram shown in Figure 6-14 does not prescribe an
implementation. Rather, it describes the high-level Functional Blocks that are needed to implement the needs of
normalization. Different implementations may need to add other Functional Blocks to meet their particular operational
requirements.

Figure 6-14: Data Normalization Operation

Data from the Normalization Functional Block is sent to the Semantic Bus [i.30]. This is a uni-directional
communication; information from the Semantic Bus is not sent to the Normalization Functional Block; it is first filtered
by the Knowledge Management Functional Block.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 91

Knowledge from the Context-Aware, Cognition Management, Situational Awareness, and Model Driven Engineering
Functional Blocks result in changes to the models used by ENI. Changes can be in the form of new model elements as
well as corrections and elaborations to existing model elements. These changes are important, as it enables the modelled
information to evolve as the ENI System learns; it also enables the knowledge itself to adapt (e.g. be used in different
ways) as the context and situation changes. Hence, the ENI models are a form of active repository. The results are sent
to the Knowledge Management Functional Block. This is discussed more in clause 6.3.4.

6.3.3.4.5 Storing Normalized Telemetry Information

Telemetry information shall be gathered and normalized as directed by the ENI System. Specifically, this includes:

• ENI Policies shall be used to define what telemetry information is desired, where it shall be collected, and the
frequency of collection.

• ENI Policies may specify one or more collection methods in prioritized order.

• Raw telemetry information shall be ingested using the appropriate ENI External Reference Point (see
clause 7.3).

• Telemetry information that is deemed valuable for making future decisions should be stored in an appropriate
repository (see clause 6.3.4.5). Stored telemetry information may be anonymized or pseudonymized as
appropriate, and should be compressed.

6.3.3.4.6 Changing Telemetry Gathering using Policies

The ENI System should use an adaptive control loop (see clause 6.3.4.7 and ETSI GR ENI 017 [i.36]). This enables its
actions to reflect changes in user needs, business goals, and environmental conditions. As these elements change, the
ENI System may need to gather new telemetry (e.g. to verify hypotheses made). All requests to gather telemetry should
be made using ENI Policies.

The ENI System shall use an appropriate mechanism to normalize ingested data. The normalization may consist of
multiple processing stages. However, the result shall conform to the ENI models being used.

6.3.3.4.7 Cognitive and Situation-Aware Directed Normalized Telemetry Gathering

This process is the same as that described for clause 6.3.3.4.6, except that metadata and/or ENI Policies should be used
to specify any special processing requirements to normalize newly specified telemetry to be gathered. This method may
be used with any of the methods in clauses 6.3.3.4.8, 6.3.3.4.9, 6.3.3.4.10 and 6.3.3.4.11.

6.3.3.4.8 Use of Metadata

The Data Normalization Functional Block should use metadata to describe and prescribe processing that should be done
on different types of ingested data to ensure its proper normalization. Since metadata may contain descriptive as well as
prescriptive information, metadata may also contain important information that defines which processing operations
should be executed to normalize the ingested data before it is sent to the next Functional Block. This method may be
used with any of the methods in clauses 6.3.3.4.9, 6.3.3.4.10 and 6.3.3.4.11.

6.3.3.4.9 Use of Structure, Pattern, and Feature Matching

The Data Normalization Functional Block should use the same set of related model-based approaches to help normalize
ingested data as those described in clause 6.3.2.4.4. This method may be used with any of the methods in
clauses 6.3.3.4.8, 6.3.3.4.10 and 6.3.3.4.11.

6.3.3.4.10 Use of AI-based Mechanisms

The Data Normalization Functional Block should use the same set of AI-based mechanisms to help normalize ingested
data as those described in clause 6.3.2.4.5. This method may be used with any of the methods in clauses 6.3.3.4.8,
6.3.3.4.9 and 6.3.3.4.11.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 92

6.3.3.4.11 Use of Formal Logic and Ontologies

The Data Normalization Functional Block should use the same set of Formal Logic mechanisms to help normalize
ingested data as those described in clause 6.3.2.4.6. This method may be used with any of the methods in
clauses 6.3.3.4.8, 6.3.3.4.9 and 6.3.3.4.10.

6.3.4 Knowledge Management Functional Block

6.3.4.1 Introduction

Knowledge management is fundamental to all disciplines of modelling and AI. Briefly, knowledge representation
defines a set of formalisms that define data, information, and knowledge in a form that a computer system can utilize.
Knowledge management includes processes, strategies, and systems that create, revise, sustain, and enhance the storage,
assessment, use, sharing, and refinement of knowledge assets using a consensual knowledge representation.

Knowledge management also enables machine learning and reasoning - without a formal and consensual representation
of knowledge, algorithms cannot be defined that reason (e.g. perform inferencing, correct errors, and derive new
knowledge) about data, information, and knowledge. Knowledge representation defines mechanisms for the
characteristics and behaviour of the set of entities being modelled; this enables the computer system to plan actions and
determine consequences by reasoning using the knowledge representation, as opposed to taking direct action on the set
of entities.

This Functional Block also manages the Data and Knowledge Repositories of ENI. In addition, this Functional Block is
responsible for managing the lifecycle of the knowledge in the Data and Knowledge Repositories. Knowledge obtained
from one ENI System may be reused by another ENI System or the Assisted System, through dedicated External
Interfaces that share part or all of the knowledge repositories of the two systems. This shall be subject to access control
permissions. The Knowledge management Functional Block may check, or instruct the Knowledge Repository to check,
if any of the required knowledge is already available, before carrying out any tasks. If that knowledge exists, then
conflict resolution (see clause 6.3.4.6.3) will be performed to either edit the existing knowledge or add the new
knowledge. It may also retrieve knowledge from the Knowledge Repositories, if such knowledge is available; or
instructing the intelligent system to collect appropriate data if the requested knowledge is not available. The Knowledge
Management Functional Block shall proactively publish new knowledge to the knowledge repository, where any
consumer (including ENI Functional Blocks and external systems) interested in that knowledge may retrieve it.

Knowledge management works with data, information, knowledge, and wisdom; see "Functional Concepts for Modular
System Operation" (ETSI GR ENI 016 [i.35]). In particular, this Functional Block directs which context and situation
information are applied to the raw data, transforming it to information and then knowledge. If appropriate, wisdom is
then derived from those two translations. As such, it is recommended that data is always first transformed into
information; this is because there is no context or situation knowledge to understand the data.

The Knowledge Management Functional Block provides foundational functionality that shall be used to analyse,
validate, and infer new and changed data, information, knowledge, and wisdom. Thus, it is used in a variety of tasks,
including analysis and decision-making.

6.3.4.2 Inferencing

An inference system automatically extends the knowledge base of the system. If inductive or abductive inferencing is
used, then the conclusions are not guaranteed, and some knowledge may be in error. ENI shall use inferencing to extend
and correct its knowledge base. For example, an inference system can gather evidence and develop a hypothesis, which
can later be proved to be true or false. Such hypotheses can also be generalized. For instance, suppose that ENI has
observed multiple occurrences of a set of faults that cause performance degradation that eventually lead to a Service
Level Agreement (SLA) violation. A possible conclusion could be that whenever this set of faults occurs, an SLA will
always occur. That may not be true. In this situation, ENI may add this conclusion to its knowledge base while using
metadata to describe its source and/or add its approximate probability. Since ENI is an experiential system, ENI shall
update the metadata (and most importantly, its probability) as it gathers more evidence to prove or disprove this
hypothesis. ENI may also use multiple types of inferencing to validate hypotheses. For example, in addition to
abduction, ENI may use reinforcement learning to more quickly converge to a conclusion as to the validity of the
hypothesis.

Inferencing is critical for realizing cognition. ENI uses a closed control loop powered by a model-driven architecture.
The closed control loop is based on FOCALE's extensions to the Observe-Orient-Decide-Act (OODA) control loop [5],
[i.1], [i.2] and [i.4]. See clause 6.3.4.7 for more details.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 93

6.3.4.3 Motivation

A knowledge representation framework defines a set of primitives that define and describe the meaning, and optionally
additional semantic characteristics (e.g. synonyms and antonyms), of concepts important to the managed environment
that can be processed by a computer system. This includes how these concepts relate to each other.

Key concepts that determine the function and nature of a knowledge representation framework include:

• How can knowledge be represented

• How can knowledge be discovered, extracted, translated, and searched

• How can knowledge be used for further inference

• How can knowledge from different sources be normalized and composed into different knowledge

A knowledge framework can be as simple as a collection of data structures and tools to manipulate those data
structures, to an architecture for representing and processing knowledge (e.g. semantic networks), to dedicated
languages for representing knowledge (these also include languages known as theorem provers that are typically based
on First Order Logic). Ontologies, and ontological tools, are typically used to provide and/or reinforce knowledge that
is linguistic in nature and/or is amenable to logic-based processing. Finally, dedicated tools for knowledge extraction,
filtering, and fusion may be required in environments where knowledge from different data sources needs to be
combined, filtered, correlated, or otherwise processed in order to produce new knowledge.

Knowledge frameworks are specific to the applications that use them. The knowledge framework of ENI is designed to
support situation awareness and cognitive decision-making.

6.3.4.4 Knowledge Processing

6.3.4.4.1 Knowledge Representation and Enhancement

The present document does not define a single approach to represent knowledge, since knowledge is dependent on
context, situation, and usage. Rather, it describes how models and ontologies may be used to build a lexicon that
represents knowledge in an extensible manner (see clause 5.6 for knowledge management requirements).

ENI shall provide at least one separate repository for processing changes to its knowledge base.

Information and data models are far more common than ontologies for networking, especially for representing low-level
concepts such as network telemetry. Hence, the ENI System shall use an information model as the authoritative source
for defining concepts in a technology neutral fashion.

An information model represents concepts in their pure form. In the real world, concepts are reified as data models,
which binds the concept to a particular implementation. The ENI System shall use its information model to construct a
set of data models according to the needs of the system.

In this approach, the information model serves as the authoritative source for defining the concepts, and the set of data
models represent commonly encountered data from the real world. This basic combination is more useful than it
appears. For example, given the knowledge of an output format of a command, this combination may be used to
determine if data is missing when that command is executed. However, it lacks both general semantics as well as usage
for a given context and/or situation. For example, telemetry may indicate that 42 bytes were dropped. This data is not
usable, since it is not known what type of message the bytes were from, and what protocol was used to send the
message. Knowledge of both of these enable the system to conclude what, if any, action to take (e.g. if this was a
control or management message, then it needs to be retransmitted; if this was data, then determine whether the protocol
will do the retransmission automatically or not). As another example, suppose that a business policy states that no one
can access the code server unless they are connected on the company intranet. In this context, the type of connection
determines whether actions are allowed or disallowed, as well as whether other actions should be taken (e.g. determine
if this is a malicious attack or not).

Thus, most data and information should require the addition of context and situation information to enhance it for
decision-making processes. However, neither of these will provide all of the semantics that are possibly required for
robust decision-making. This is because both context and situation are, fundamentally, facts. While additional
inferences may be derived from both, neither provides additional semantics for the data and information.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 94

Therefore, the ENI System should add ontological data and processes to the models. One way to do this is to build a
multigraph (or a set of multigraphs), as shown in Figure 6-15. In this approach, the models and the ontologies are both
represented as graphs; semantic edges (i.e. relationships of a semantic nature, such as synonymy and meronymy) are
then created between the graphs to define how one set of concepts is related to the other set of concepts. The resulting
multigraph consists of semantic relationships that join the model on the left to the set of ontologies on the right; these
are represented by the double-edged arrow connecting them for simplicity. This semantic representation is built
iteratively, and is summarized in Figure 6-15.

Figure 6-15: Knowledge Representation and Enhancement

Step 1 starts with identifying one or more model elements in the information model. Step 2 may use a number of
different tools, including computational linguistics, semantic equivalence, and pattern and structural matching to relate
the set of model elements to a set of terms in the lexicon. This broadened view is then used to search for semantically
equivalent concepts in a set of ontologies. In general, this method will identify a part of a taxonomy without identifying
all concepts in the taxonomy. Each identified concept may be weighted and, for the moment, is represented as a uni-
directional edge, forming a directed graph. Each ontology concept that was identified in the semantic matching process
in step 3 may then be examined to see if it is related to other concepts in this or other ontologies. As each new concept
is found, it shall be marked (e.g. annotated and/or added to a list) for possible addition to the existing concepts that were
already matched from the lexicon. Step 4 then takes the semantic concepts and relationships and determines if there are
any new model elements that are related to them. In this step, the weight of the edge representing the relationship may
be adjusted, as well as its directionality; however, if it is found to be bi-directional, then this should be represented
using two edges, since in general, the nature of the relationship will differ. Step 4 is bidirectional, which signifies that
the above process is iterative. This process shall iterate until either no more relationships can be found, or until a
sufficient number of relationships are found. When a specific task is being executed, often all that is required is to find
enough matching elements to either prove or disprove a hypothesis.

Figure 6-15 has been simplified to only show the process for finding concepts that are directly related to the concept
being searched. For example, if a concept is found that is not directly related to a term in the, then additional checks are
formed to see if:

1) it is indirectly related; or

2) it should be added as a new relation (i.e. this represents new knowledge).

The underlying idea for these additional checks is to verify that each new concept reinforces or adds additional support
for the concept that was already selected. Hence, this process can be thought of as strengthening the semantics of the
match. As larger groups of concepts are matched to larger groups of model elements, a stronger correlation between the
meaning of the grouped concept and the group of facts is established. This is, in effect, a self-check of the correctness of
the mapping, and is used to eliminate concepts and model elements that match each other, but are not related to the
managed entity that is being modelled.

In the above process, the types of semantic relationships may be changed to achieve a closer amount of semantic
closeness. This may help speed the alignment process.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 95

6.3.4.4.2 Knowledge Normalization

The discussion in the previous clause shows the complexity that may be involved in generating and validating
knowledge. Therefore, knowledge needs to be normalized.

Knowledge normalization requires the correct meaning of a word or phrase to be discovered so that incorrect and
ambiguous information can be corrected. Many of the same techniques discussed in clauses 6.3.3.4.8, 6.3.3.4.9,
6.3.3.4.10 and 6.3.3.4.11 of the Data Normalization Functional Block may also be used to normalize knowledge.
AI-based techniques for natural language processing are of particular interest. For example, Bidirectional Encoder
Representations from Transformers (BERT) is a context-dependent algorithm that considers all of the words of an input
sentence simultaneously and then uses an attention mechanism to develop a contextual meaning of the words. This
means if the same word appears twice in the same sentence, but has different meanings, (e.g. "He is banking on the top
5 banking stocks increasing in value"), each meaning will have a different embedding. This enables common
recognition and classification tasks to be performed. Examples include:

1) determine if a question-answer pair is relevant or not;

2) classify a single sentence (e.g. detect if the input sentence is spam or not);

3) generate an answer to a given question; and

4) single sentence tagging tasks such as named entity recognition.

See "Introduction to Artificial Intelligence Mechanisms for Modular Systems" (ETSI GR ENI 018 [i.37]) for a
description of transformers and related algorithms for natural language processing.

Natural language processing models excel at identifying the meaning of a word or phrase in a sentence. This can then be
coupled with ontologies and formal logic to ensure that when a given word or phrase is changed, both the meaning of
that word or phrase as well as the meaning of the sentence are not altered. Natural language processing models, such as
transformers, should be used in an ENI System to recognize and normalize knowledge.

Natural language processing is particularly important for processing ENI Intent Policies. This is because ENI Intent
Policies are written using a restricted natural language. However, they are also useful for other applications, such as
business rules, contextual, and situational information, as well as any other input that can be expressed using natural
language.

6.3.4.4.3 Transforming Data, Information, and Knowledge into Wisdom

The Data-Information-Knowledge-Wisdom (DIKW) hierarchy is often used to contextualize data, information,
knowledge, and wisdom, and to identify and describe the processes involved in the transformation of an entity at a
lower level in the hierarchy (e.g. data) to an entity at a higher level in the hierarchy (e.g. wisdom). Each of the higher
types in the hierarchy includes the categories that fall below it. See "Functional Concepts for Modular System
Operation" (ETSI GR ENI 016 [i.35]) for more background information for a more thorough discussion of the DIKW
hierarchy.

The ability to transform an entity at a lower level in the hierarchy to an entity at a higher level in the hierarchy shall be
based on the understanding required to move to that higher level. Hence:

• transforming data into information involves understanding how contextual and situational information are used
to add meaning to ingested data;

• transforming information to knowledge involves understanding complex relationships to detect patterns of and
relationships between information;

• transforming knowledge to wisdom involves understanding the relevance and significance of information and
knowledge and, more importantly, why the information and knowledge exists.

Data shall be transformed into information when relations between data, and the context that generated the data, are
understood. This also includes understanding the relevance of data given the current context or situation. Information
shall be transformed into knowledge when what the information means, as well as the patterns that generated the
information, are understood. Knowledge consists of a mix of contextual information, values, experience, and rules that
represent situational choices. Knowledge involves the synthesis of multiple sources of information over time, and
hence, should be refined experientially. Knowledge shall be required to perform decision-making and predict future
outcomes.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 96

Knowledge shall be transformed into wisdom when the specific occurrence of specific data, information, and
knowledge is understood. Wisdom is accumulated knowledge that enables situational decision-making to be performed
accurately and efficiently. Wisdom shall enable more effective planning and prediction.

6.3.4.4.4 Semantic Bus

A Semantic Bus is a type of message bus used to orchestrate and filter communications between ENI Functional Blocks
based on the meaning, attributes, and metadata of a message using a shared set of interfaces. See "Functional Concepts
for Modular System Operation" (ETSI GR ENI 016 [i.35]) for more background information.

A Semantic Bus shall use meaning, attributes, and metadata for the following tasks: publication of and subscription to
messages, routing messages, and transformation of message content. For example, message content can be normalized
(to use consensual terminology and concepts) by the Semantic Bus in order to facilitate different endpoints
understanding a message. As another example, content can be orchestrated by routing on the meaning of the message,
as opposed to just attributes. This shall be performed by semantically interpreting a message (including its payload)
using an ontology and/or natural language processing (see clause 6.3.4.4.2).

6.3.4.5 Repositories

6.3.4.5.1 Overview

The Knowledge Management FB shall contain at least four different types of repositories:

• a Data Repository, to store the collected data from different parts of the Assisted System after appropriate
translation by the API broker;

• a Knowledge Repository, to store knowledge and wisdom (see clause 6.3.4.5);

• a Model Repository, to store the information model, data models, and ontologies;

• a Blackboard Repository, to provide a shared working space for computations.

Each Repository shall have a different Internal Reference Point, with different APIs, for communication with other ENI
functional blocks. This is necessary to accommodate different access permissions to the types of data and information
that are stored in each Repository.

Each Repository may be used to store and retrieve historical data and information of its appropriate type.

An ENI system shall have the capability of proactively publishing new data and knowledge to the respective
repositories, and proactively retrieving updated data and knowledge from both repositories as needed.

Figure 6-16 shows a functional overview of the Repository Management Functional Block, which is a part of the
Knowledge Management Functional Block. The following clauses are organized as follows. Clauses 6.3.4.5.1 through
6.3.4.5.5 explain the function of the different Repositories. Then, clause 6.3.4.5.6 provides a functional overview of
how the rest of the Functional Blocks operate to manage the different Repositories, as well as communicate to the other
ENI Functional Blocks. Finally, clause 6.3.4.5.7 describes semantic querying.

Figure 6-16 only shows the Semantic Bus that is used by different Functional Blocks for communication; it does not
show any Internal Reference Point of the Knowledge Management Functional Block for simplicity.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 97

Figure 6-16: Repository Management Functional Block

6.3.4.5.2 Data Repository

The ENI System shall provide one or more Data Repositories for collecting ingested data and information from external
sources. The Data Repository may contain raw network data, obtained using the appropriate External Reference Points,
between an ENI System and the Assisted System, as well as contextual, business, and other types of data and
information. The Data Repository should interact with the Context Aware, Cognition Management, Situation
Awareness, Model-Driven Engineering, and Policy Management Functional Blocks using the Semantic Bus. In
addition, a set of Internal Reference Points may be used for direct communication between ENI Functional Blocks.

The Data Repository interacts with the Data Ingestion and Normalization Functional Blocks to ingest and store input
data and information to ENI functions, and interacts with the Denormalization and Output Generation Functional
Blocks to store and provide output data from ENI.

6.3.4.5.3 Model Repositories

The ENI System shall use a single Information Model, as well as a set of Data Models that are each derived from the
Information Model, as the foundation of its knowledge representation. The ENI System may use a set of ontologies to
augment the knowledge representation with deeper semantics.

The ENI Information Model, along with its set of derived Data Models and, possibly, Ontologies, represent the
foundation of how ENI represents knowledge. Therefore, additional security mechanisms shall govern operations on
accessing, updating, using, and sending the information and data associated with any Model Repository.

The Model Repository should interact with the Context Aware, Cognition Management, Situation Awareness,
Model-Driven Engineering, and Policy Management Functional Blocks using the Semantic Bus. In addition, a set of
Internal Reference Points may be used for direct communication between ENI Functional Blocks.

6.3.4.5.4 Knowledge Repositories

The ENI System shall use at least one dedicated repository, called the Knowledge Repository, to store, manipulate, edit,
and retrieve knowledge and wisdom. This may include axioms, theories, and hypotheses.

The ENI System should annotate hypotheses with their current state (i.e. proven, disproven, or work in progress). This
annotation may include the context and/or situation in which the hypothesis was made.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 98

The Knowledge Repository should interact with the Context Aware, Cognition Management, Situation Awareness,
Model-Driven Engineering, and Policy Management Functional Blocks using the Semantic Bus. In addition, a set of
Internal Reference Points may be used for direct communication between ENI Functional Blocks.

6.3.4.5.5 Blackboard Repositories

The ENI System should use at least one repository that works as a blackboard system. A blackboard system uses a
shared workspace that a set of independent agents contribute to, which contains input data along with partial,
alternative, and completed solutions. Both the blackboard and the contributing agents are under the control of a
dedicated management entity. Each agent is specialized in its function and operation, and typically is completely
independent of other agents that are using the blackboard. A controller monitors the state of the contents of the
blackboard and synchronizes the agents that are working with the blackboard. This is a basic software architectural
pattern ([i.19]).

ENI may use a variant of a blackboard architecture, in which the blackboard is divided into a set of layers. This type of
system is shown in Figure 6-17.

Figure 6-17: Blackboard Architecture

In Figure 6-17, each blackboard layer is a shared working space, and ingests data and information from a set of agents
that are at that level. A level could be one hypothesis from a set of hypotheses, or a particular stage in the computation
of a program, or other similar stages. For example, if the blackboard was being used as part of a larger compiler
program, then level 1 could be the raw input, level 2 could be part-of-speech tags, level 3 could be grouping those tags
into larger phrases, and so forth.

The lowest level agent typically supplies the raw data and information to the blackboard system. Higher-level agents
may have additional data and information received from outside the blackboard system, as well as inputs from one or
more layers of the blackboard, and infer new entities to be stored in one or more higher layers.

The blackboard controller is responsible for coordinating the blackboard and the agents. This is typically done using an
inference cycle, which is driven by a set of events received. The blackboard controller responds to an event by
publishing a message to all agents that are interested in this event. The ENI System may prioritize the publishing of
events to a set of agents by using a set of criteria, such as relevance, context, and other factors. The blackboard ingests
the input data and information from the affected agents and produces new entities on the blackboard, which triggers a
new event. The blackboard controller examines the entities produced by the last inference cycle, and then a new
inference cycle starts; this process iterates until no other agent can contribute anything else.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 99

NOTE: This process may not succeed (e.g. a hypothesis cannot be proven in finite time); however, this
information is valuable in and of itself.

The Blackboard Repository should interact with the Context Aware, Cognition Management, Situation Awareness,
Model-Driven Engineering, and Policy Management Functional Blocks using the Semantic Bus. In addition, a set of
Internal Reference Points may be used for direct communication between ENI Functional Blocks.

6.3.4.5.6 Repository Operation

Each of the four types of repositories described in the preceding clauses operates in a common manner, which is
described below. Each repository may be realized as an active repository (i.e. one that pre- and/or post-processes
information that is stored or retrieved). In addition, the Blackboard Repository may be used by any of the other
repositories to aid in processing queries.

The Repository Management Functional Block should provide a repository service that clients may subscribe to without
having to know about the internal structure of any repository. Therefore, a query for information or data shall be sent
either using the Semantic Bus or, alternatively, using an appropriate Internal Reference Point, to the Knowledge
Management Functional Block. This query is read by the Query Parsing function of the Repository Management
Functional Block, which parses the query for completeness and syntactic correctness. The results are then sent to the
Semantic Analyser, which analyses the meaning of the query with respect to the current context and/or situation. This
enables the Repository Management Functional Block to understand which set of Repositories contain data and/or
information that can satisfy the query (see clause 6.3.4.5.3). Accordingly, the Query Rewriter takes this information and
rewrites the original query into a set of queries, where one or more of the rewritten queries are formulated specifically
for a particular repository. The rewritten set of queries may target one or more repositories.

Each rewritten query is sent to the appropriate repository. The results of each rewritten query are collected by the Query
Results Assembler, which organizes the results into one or more result statements; these result statements are then sent
by the Results Output to the Semantic Bus (or alternatively, to an appropriate Internal Reference Point).

The Controller monitors the external state of the ENI System, and correlates that with the internal state of the
Repository Management Functional Block. This is used to synchronize the blackboard (if it is used), along with the
querying and collecting of results from each repository.

Note that while the Data Repositories are typically used to store and retrieve data, other Repositories may actively pre-
and post-process information that they store and retrieve. For example, an ontology in the Model Repository will make
inferences, which produces new data and information. Once validated, those changes shall be added to affected
Repositories by the Knowledge Management Functional Block, which shall publish a notification of those changes to
the Semantic Bus. Such Repositories are referred to as Active Repositories.

6.3.4.5.7 Semantically Augmented Query and Learning

The purpose of the Semantic Analyser shown in Figure 6-16 is to analyse the meaning of the query with respect to the
current context and/or situation. More specifically, the context and/or situation may alter the meaning of the query.
Hence, the Semantic Analyser shall use an ontology and/or natural language processing (see clause 6.3.4.4.2) to ensure
that the query as written takes contextual and situational data into account. For example, a query may ask for all
authenticated connections to a domain. However, a business rule could be in force that restricts the type of connections
to that domain to a particular type (e.g. only the private Intranet is allowed to connect to the domain). Therefore, when
the query is examined by the Semantic Analyser, it shall understand the constraints imposed by the situation and return
only those connections from the private Intranet that have been authenticated.

6.3.4.6 Function of the Knowledge Management Functional Block

6.3.4.6.1 Introduction

The purpose of the Knowledge Management Functional Block is to discover, analyse, validate, and infer new and
changed data, information, knowledge, and wisdom. See "Functional Concepts for Modular System Operation" (ETSI
GR ENI 016 [i.35]) for more background information.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 100

The Knowledge Management Functional Block shall attach multiple contextual- and/or situational-specific meanings to
a word, phrase, or concept. This enables the ENI System to account for the correct meaning of that word, phrase, or
concept when user needs, business goals, and/or environmental conditions change. The attachment of multiple
contextual- and/or situational-specific meanings to a word, phrase, or concept shall be done during the Knowledge
Processing phase (see clause 6.3.4.4) and stored in one or more appropriate Repositories (see clause 6.3.4.5). The
attachment should include metadata that defines the context and/or situation for each meaning.

6.3.4.6.2 Grounding Knowledge Using Semantics

Context defines the knowledge about an Entity that exists or has existed. It is modelled as a set of objects and
relationships. The context model shall include mechanisms that represent changes in the environment, as well as
changes in behaviour of an ENI Functional Block as a set of closed loop systems.

There are a number of existing technologies and open source that can be used to represent context and knowledge.

6.3.4.6.3 Resolving Knowledge Conflicts

A knowledge conflict is defined when the definition of a word, phrase, object, or behaviour does not match its stored
definition. The Knowledge Management Functional Block shall be able to detect such conflicts. The Knowledge
Management Functional Block need not declare that a knowledge conflict exists until suitable processing (e.g. as
described in clause 6.3.3.4.3) has been performed.

There are three potential reasons for a knowledge conflict. First, an error was made in storing the previous definition.
The Knowledge Management Functional Block shall compare the previous definition with the current definition using
semantic reasoning as described in clauses 6.3.3.4.8 and 6.3.3.4.9), AI-based natural language processing (e.g. as
described in clause 6.3.3.4.10), and/or formal logic (e.g. as described in clause 6.3.3.4.11).

Second, contextual and/or situational information was not correctly taken into account. The Knowledge Management
Functional Block shall compare the metadata of the current definition to the metadata of all stored definitions to
determine if this was the case and, if so, correct it.

Third, a new meaning of that word, phrase, object, or behaviour was discovered. The Knowledge Management
Functional Block shall first perform the above two checks. Then, the Knowledge Management Functional Block may
define a hypothesis to test the new definition, and attempt to prove the hypothesis using either AI-based natural
language processing and/or formal logic. If the hypothesis is validated, then the new definition shall be added; metadata
defining the current context and/or situation shall also be added to the definition.

6.3.4.6.4 Knowledge Distribution

Knowledge should be distributed using the Semantic Bus (see clause 6.3.4.4.4). Knowledge may be distributed using a
shared repository or via file transfer if using the Semantic Bus does not meet application-specific requirements. See
"Functional Concepts for Modular System Operation" (ETSI GR ENI 016 [i.35]) for more background information on
the Semantic Bus.

6.3.4.7 Operation of the Knowledge Management Functional Block

6.3.4.7.1 Introduction

Figure 6-18 shows a highly simplified view of basic knowledge processing based on the OODA control loop [5]. The
functional block diagram shown in Figure 6-18 does not prescribe an implementation. Rather, it describes the high-level
Functional Blocks that are needed to implement the needs of knowledge management. Different implementations may
need to add other Functional Blocks to meet their particular operational requirements.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 101

Figure 6-18: Simplified Knowledge Processing Flow

Figure 6-18 uses a multi-level set of OODA-inspired control loops [5], similar to FOCALE [4]. Both of these are
discussed in more detail in clauses 6.3.4.7.2 through 6.3.4.7.5.

The assignment of Functional Blocks to each stage of OODA processing illustrates the main activities of those
Functional Blocks. Some Functional Blocks, such as Knowledge Management, may perform tasks in other parts of the
OODA loop. For example, the Knowledge Management Functional Block provides the knowledge representation used
by all ENI Functional Blocks. In FOCALE, this principle was used to facilitate input processing of ingested data by
matching the data, along with observed patterns of data, to known knowledge to more quickly and efficiently validate
and verify ingested data. As another example, the Situational Awareness Functional Block is responsible for
understanding the relevant changes that pertain to the data, information, and behaviour of the Assisted System, how
those changes affect the goals of the ENI System, and to project what is likely to happen in the future (see clause 6.3.6).
This spans the Orient and Decide functions of OODA.

Figure 6-18 is depicted as a sequential flow for simplicity. However, OODA is a form of closed control loop, and
hence, the operations in the Knowledge and Decision Processing groups of functional blocks typically interact in a non-
sequential manner. This is made more apparent in FOCALE, which is an autonomic architecture using an enhanced
version of the OODA control loop.

The following clauses describe the functionality of the Knowledge Processing and Decision Processing functions in the
context of an OODA control loop. In actuality, this is a hierarchical set of OODA-inspired control loops; the "outer"
control loop consists of the four sets of processing operations, and the "inner" control loop is the Knowledge and
Decision Processing operations. This inner loop is necessary to properly process and derive knowledge and wisdom,
and perform accurate inferencing (see clause 6.3.5), on contextually-changing information.

Reference [i.1] describes why the OODA loop was chosen over other methodologies, such as MAPE-K.

6.3.4.7.2 Observe Functionality

Input processing uses a set of agents to ingest input data. It consists of the Data Ingestion and Normalization Functional
Blocks, as described in clauses 6.3.2 and 6.3.3. This stage corresponds to the "Observe" part of the OODA control loop.
The purpose of this part of the OODA control loop is to ensure that the correct data and information is gathered. The
output of the input processing agents is sent to the Knowledge Processing functional block.

The OODA loop assumed that different data and information was normalized and combined. This process was first
explicitly realized using the FOCALE architecture. This is why it is recommended that the input processing consist of
two Functional Blocks; this adheres to the Single Responsibility Principle [i.9], a crucial software design tenet for
building scalable software-intensive systems. See also "Functional Concepts for Modular System Operation" (ETSI
GR ENI 016 [i.35]) for more background information on such principles.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 102

6.3.4.7.3 Orient Functionality

Knowledge Processing consists of four main Functional Blocks: Knowledge Management, Context-Aware, Cognition
Management, and Situational Awareness. The last three are described in clauses 6.3.5, 6.3.6 and 6.3.7. This set of
Functional Blocks correspond to the "Orient" part of the OODA control loop. The purpose of this part of the OODA
control loop is to ensure that input data and information is adapted to the current context and situation.

The "Orient" part of the OODA control loop consists of three types of processing: semantic annotation, knowledge
inferencing, and situational processing. In each case, one or more of these four Functional Blocks may perform each of
these three functions.

Semantic Annotation is a set of processes that examine the input data, and annotates it where possible to enable it to be
better understood by subsequent Functional Blocks. The annotation is based on the current context and situation. This
enables behaviour to be adapted based on changes to the current context and/or situation to ensure that the goals of the
system and protected and maintained. Knowledge Inferencing, which is done primarily by the Cognition Management
and the Situation Awareness Functional Blocks, then follows.

The contextually-aware data is then ready for inferencing operations to be performed to discover more about the nature
and meaning of the data. Different types of inferencing (e.g. structural and logical) may then be performed. Inferencing
produces knowledge from knowledge, and the newly produced knowledge shall also be integrated into the collective
ENI knowledge base (this is not shown in Figure 6-18). The inferencing may take different forms, but is predominantly
semantic in nature. For example, if a Customer object is recognized, then the annotations may describe relevant SLAs
and contracted Services that are currently active. As another example, it may define applicable business and regulatory
policies that shall be considered that are based on the current context. At this point, the newly ingested information has
completed "pre-processing", and is ready for situational processing (the last stage of the "Orient" operation of the
OODA control loop).

Situational processing analyses the "pre-processed" knowledge to determine what (if anything) has just occurred that
does not align with its system goals. This could take many forms, such as determining that possible system degradation
may occur, or that the system could be better optimized, or that one or more of its goals are in jeopardy. If no problems
have occurred, then actions need not be taken. Otherwise, the situational processing then decides what is likely to
happen, and how that affects the goals that the system is trying to achieve. This produces a set of possible alternative
actions. An ENI System shall examine each set of actions, and choose the set that best meet its current set of goals.

6.3.4.7.4 Decide Functionality

The "Decide" part of the OODA control loop consists of two Functional Blocks: Model-Driven Engineering and Policy
Management. These are described in clauses 6.3.8 and 6.3.9, respectively. The Model-Driven Engineering Functional
Block acts as the "brains", and the Policy Management Functional Block acts as the "brawn". The purpose of this part of
the OODA control loop is to decide whether any action should be taken to preserve the goals of the system.

The Model-Driven Engineering Functional Block takes its input from the "Orient" function, that compares the current
state and situation of the system being managed to its desired state for that situation, and has recommended a set of
corrective actions to take. Up to this point, all analysis has been done on the system model, which is a logical model that
defines the manageable objects, relationships, and constraints that are being managed. The Model-Driven Engineering
processes take the changes to the system model and then translates the appropriate set of actions into a form that can be
implemented by the Assisted System or its Designated Entity. The result of this translation is then given to the Policy
Management Functional Block.

NOTE: The present document does not define how the above translation is done, as that is implementation-
specific.

The Policy Management Functional Block translates the output of the Model Driven Engineering Functional Block to a
reusable set of policies. ENI Policies are made reusable in two ways:

1) storing the policy as an object in one or more models and repositories; and

2) storing the language definition of the policy in one or more repositories.

Each ENI policy may be written in imperative, declarative, and/or intent forms, and may represent recommendations or
commands. The use of policies provides two important benefits. First, it defines a reusable output that can be stored and
retrieved; this is critical for explanation-based auditing of what decisions the ENI System made. Second, it simplifies
construction and integration issues, since any policy is an instance of an underlying language. ENI may use Domain
Specific Languages (DSLs) to implement one or more forms of policies.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 103

6.3.4.7.5 Model-Driven-Enhanced Decide Functionality

The "Decide" portion of the OODA control loop may be enhanced by using Model-Driven Engineering principles
(MDE). MDE is a model-centric software engineering approach for building software systems that can be dynamically
modified at runtime. It treats models as first-class artifacts, and does design and analysis of models in place of code.
MDE is particularly effective when the use of software design patterns is maximized [i.5] and [i.10].

The addition of MDE mechanisms should be used to enhance the Decide portion of the OODA loop. This is especially
useful when the context and situation changes. The use of MDE in these circumstances enables the functionality of this
portion of the control loop to be dynamically changed at runtime, thereby facilitating its adaptation to the changes in the
context and/or situation. More specifically, this enhancement may enable the Decide portion to generate better and more
complete plans.

6.3.4.7.6 Act Functionality

The "Act" part of the OODA control loop consists of two Functional Blocks: Denormalization and Output Generation.
These are described in clauses 6.3.10 and 6.3.11, respectively. The functionality of the Denormalization and Output
Generation Functional Blocks may be combined into a single Functional Block if desired. The purpose of this part of
the OODA control loop is to take one or more actions to preserve the goals of the system.

The input to the Denormalization Functional Block is the set of Policies defined by the Policy Management Functional
Block. These policies are in a normalized form for ENI; the Denormalization Functional Block translates them to a
denormalized form to enable external Functional Blocks to understand each policy. This may be done using a set of
output processing agents. Each agent is responsible for de-normalizing the data (e.g. translating the knowledge into a
specific language and format for a given set of devices). For example, these agents could translate an ENI policy to an
alternative form; one example is translating an ENI declarative policy to Open Stack Congress. This is then sent to the
Output Generation Functional Block.

The Output Generation Functional Block packages the translated ENI Policy to a form appropriate for the external
entity that is using the ENI Policy. Output processing may use a set of agents to translate the ENI Policy into specific
forms (e.g. per vendor and per device, or into a payload for a specific protocol that uses a particular encoding format).

6.3.4.7.7 Model-Driven-Enhanced Act Functionality

The addition of MDE mechanisms should be used to enhance the Act portion of the OODA loop. Similarly to
enhancing the Decide portion of the OODA loop with MDE (see clause 6.3.4.7.5), this enables the functionality of this
portion of the control loop to be dynamically changed at runtime, thereby facilitating its adaptation to the changes in the
context and/or situation. More specifically, this enhancement may enable the Act portion to generate more accurate
recommendations and commands.

6.3.4.7.8 Learning-Enhanced OODA

FOCALE [4] added both learning and reasoning to the OODA control loop. Learning included both machine learning in
the traditional AI sense as well as learning using reasoning mechanisms, which is covered in clause 6.3.4.7.9.

Supervised learning (see ETSI GR ENI 018 [i.37]) should be used when one or more datasets that have labelled input
and output values. Supervised learning algorithms are ideal for classification and regression tasks. Classification
algorithms are used to predict the category that a new datum belongs to based on one or more independent variables. In
contrast, regression algorithms predict an associated numerical value for the input datum based on previously observed
data.

Unsupervised learning (see ETSI GR ENI 018 [i.37]) should be used when there is a large amount of data that do not
have labels, and the task is to determine the structure of the data. Clustering is a multivariate statistical procedure that
collects data containing information about a sample of objects and then arranges the objects into groups, where objects
in the same group are more similar to each other than to objects in other groups. Clustering identifies commonalities in
the objects in each group, which can also be used to detect anomalous data that do not fit into any group.

Reinforcement learning (see ETSI GR ENI 018 [i.37]) should be used when there is no data, or the dataset is
inadequate, and the task is to learn what action to take in a particular situation when interacting with a new entity. This
type of learning should also be used when the only way to collect information about the entity is to interact with it.
More specifically, reinforcement learning shall interact with the entity to first, negotiate its capabilities, and then
discover how to exchange data and commands through learning how to react with the entity.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 104

These and other types of learning should be used to enable the OODA-based control loops used in the ENI System to
operate more efficiently. In essence, learning provides memory to all phases of the OODA control loop.

6.3.4.7.9 Reasoning-Enhanced OODA

Reasoning is the process of making a conclusion or decision by analysing the facts available in a situation. There are
two types of reasoning, inductive and deductive.

Inductive reasoning involves drawing conclusions from facts, using logic. Inductive reasoning involves Bayesian
updating. A conclusion can seem to be true at one point until further evidence emerges and a hypothesis needs to be
adjusted. Bayesian updating modifies the probability of a hypothesis being true as new evidence is supplied. This is
why formal logic plays an important role in the decision making processes used in the ENI System.

Thus, induction can thus be strong or weak. If an inductive argument is strong, the truth of the premise means that the
probability that the conclusion is correct is stronger. Similarly, if an inductive argument is weak, then the probability
that the conclusion is correct is weak. Note that in particular, a conclusion is either strong or weak, and shall not be
considered right or wrong. In contrast, deductive reasoning involves deciding whether an inference is correct or
incorrect from a given set of premises. In deduction, the idea is to determine whether link between the set of premises
and the conclusion is always true or not. More formally, a hypothesis is formed, and then evidence is collected to
support it. If observations support its truth, the hypothesis is confirmed.

Deductive reasoning shall be used for decision-making in an ENI System when enough facts, axioms, and/or knowledge
is present to support inferencing. Inductive reasoning should be used for decision-making in an ENI System when it is
required to prove a general principle, not a specific fact or inference.

6.3.5 Context-Aware Management Functional Block

6.3.5.1 Introduction

This clause describes the motivation for using context-aware behaviour, the effect it has on the System Architecture,
and the benefits that it provides. See clause 6.3.7 or a description of situation awareness, and specifically clause 6.3.7.5
for a comparison between this Functional Block and the situation awareness Functional Block.

6.3.5.2 Motivation

Most management systems today are collections of functionality that operate as silos. They are characterized by:

• Static, end-to-end process-based management.

• Little or no understanding of context, and hence, no ability to provide behaviour and services personalized to a
given context.

• No ability to change behaviour due to changes in context.

Context may produce a higher intrinsic value for data versus raw data, and hence, make the generation of information
easier. Context-awareness assumes that either the data and/or the associated metadata deliver additional information
about the characteristics and behaviour of the environment that an ENI System interacts with. Context ensures that an
ENI System is focused on tasks that the operator defines as important. The additional knowledge provided by context
may offer a greater level of reliability and usefulness, both for the information and knowledge gathered by an ENI
System as well as for the actions taken by the ENI System.

6.3.5.3 Function of the Context-Aware Management Functional Block

6.3.5.3.1 Introduction

Context-awareness enables a system to gather information about itself and its environment [i.2], [i.3] and [i.15]. This
enables the system to provide personalized and customized services and resources corresponding to that context. More
importantly, it enables the system to adapt its behaviour according to changes in context.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 105

Context-awareness enables diverse data and information to be more easily correlated, and hence, integrated, since
context acts as a unifying filter. As such, identifying contextual information is critical for understanding both ingested
data and information as well as how data and information, as well as existing knowledge and wisdom, can be affected.

The contextual history of a user, a user application, or a device, as well as its prior interactions with an ENI System
(including, for example, session state), may be useful for driving policy decisions regarding the current and future
interaction between an ENI System and that entity, including decisions made by the ENI System that affect that entity.
For example, past behaviour can be used to more quickly arrive at a decision. Alternatively, historical information can
be used to flag anomalies that need further action to resolve.

Contextual data may be categorized in terms of data and information that an ENI System interacts with. This includes a
user, the applications of a user, the time and location of objects that the user interacts with, and different types of
relationships that exist among entities that an ENI System interacts with as well as between an ENI System and those
entities. Examples include:

• Personal and group information for a user (e.g. contact information, roles played by the user, and profile and
preference information).

• Location of the user and any devices that the user is using or interacting with (e.g. geo-code, the centroid of a
surrounding polygon).

• Characteristics and behaviour of a device (e.g. type of access provided (if any), MAC and IP addresses, and
features such as forward, routing, encryption).

• Characteristics and behaviour of any applications used by a user.

• Types of relationships that exist between an ENI System and entities that use or interact with an ENI System,
as well as the nature of those relationships (e.g. is it temporally sensitive or static).

• Types of relationships that exist between entities that an ENI System interacts with.

The Context of an Entity is a collection of measured and inferred knowledge that describe the state and environment in
which an Entity exists or has existed [i.2]. In particular, this definition emphasizes two types of knowledge - facts
(which can be measured) and inferred data, which results from machine learning and reasoning processes applied to
past and current context. It also includes context history, so that current decisions based on context may benefit from
past decisions, as well as observation of how the environment has changed.

6.3.5.3.2 Modelling and Representation of Context Awareness

Different aspects of the DEN-ng [i.1] context model are described [i.2] and [i.3]. This is a robust information model,
and shall serve as the foundation of the context information model used for the ENI System Architecture. It is shown in
Figure 6-19.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 106

Figure 6-19: Foundation of the DEN-ng Context Model

The DEN-ng model represents the Context of a ManagedEntity as a collection of data, information, and knowledge that
result from collecting measurements of and reasoning about that ManagedEntity. This is represented by the
ManagedEntityHasContext aggregation. Not all ManagedEntities have associated Context, so the multiplicity of this
relationship is 0..n - 0..n. This enables both Context and the ManagedEntity to be defined independent of whether one is
associated with the other.

Context is defined as an extensible set of building blocks that can be combined as required. Hence, two classes are
defined, called Context and ContextData, that represent the concepts of whole (or assembled) context and partial (or
component pieces of) context, respectively. They each a set of subclasses, and each may be associated with different
concepts (e.g. location, time, and connectivity). This is a unique model in this field, as it enables the component pieces
of context (i.e. instances of the ContextData class) without affecting the overall context. This is how the context model
is adjusted to reflect changing user needs, business goals, and environmental conditions. This approach avoids a
common weakness of traditional context models, which try to represent context using an unorganized smattering of
objects that each contain some interesting attributes, but are not cohesive (see ETSI GR ENI 016 [i.35]) in nature. It
also avoids the temptation to define types of context as rigid classes that always have to be used. Instead, this model
enables ContextData to model the same concept (e.g. Location or Connectivity) in different ways to match the specific
needs of the application using it.

The ContextData class represents the context of one or more ManagedEntity classes that are part of a larger context.
The Context class represents the context of the ManagedEntity that the management system is interested in, and consists
of its own knowledge plus a set of aggregated ContextData objects. Note that the HasContextData aggregation has a
multiplicity of 0..n - 1..n. This means that a Context has one or more ContextData objects, but each ContextData object
can be instantiated and updated before it is aggregated by a particular Context object. The advantages of this approach
are:

1) it encourages the modelling of smaller "context building blocks" (i.e. instances of the ContextData object) that
can be reused and combined to form larger contexts (i.e. instances of the Context object);

2) the information model can be used to define different aspects of context as either ContextData or as Context;
and

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 107

3) different aspects of context can be modelled in the varying detail that they require whilst still being able to
assemble them into a coherent whole.

The composite pattern [7] and [i.5] is applied to both the Context as well as the ContextData objects, enabling the
construction of extensible hierarchies of different aspects of aggregate contexts. The ContextDataAtomic class models
ContextData as a single, stand-alone object, while the ContextDataComposite class models objects that are composite in
nature (e.g. made up of multiple distinct ContextData objects that can each be separately managed).
ContextDataComposite objects function as containers that can contain ContextDataComposite and/or
ContextDataAtomic objects, similar to folders and files in a directory. Both Context and ContextData objects can
represent facts and inferences.

The ContextDataDetails association class defines the semantics of how each particular type of ContextData object is
aggregated by the Context object. The four attributes of ContextDataDetails are common to all types of aggregations of
ContextData; this enables different applications to have a common "control point" for processing context information.
This is explained more in clause 6.3.5.3.3.

6.3.5.3.3 Processing Contextual Updates

The Policy Pattern [i.1] is used in DEN-ng as well as in the MEF Core Model [7] and MEF Policy Model [8]. This
pattern is represented in Figure 6-20, and shall be used in the ENI System Architecture due to its flexibility and
extensibility.

Figure 6-20: Controlling the Semantics of Location ContextData using Policies

The Policy Pattern enables different applications to represent their specific needs by constructing an association
between the superclass of all Policies [8] and the association class of a particular ManagedEntity that the set of Policies
should control. This is shown in Figure 6-20 as the PoliciesGoverningContextDataLocation association. Policy
management of context is thus consistently done by defining application-specific policies and associating them with the
appropriate context association classes.

Figure 6-20 also shows how another model (in this case, Location) may be used in the context model. In Figure 6-20,
the ContextDataHasLocationSemantics aggregation is used to associate the top part of the DEN-ng Location model with
the ContextData class. Since all relationships are model-independent, this enables any other Location model to be used
in place of the DEN-ng Location model. The above model is far superior to the common practice of defining a set of
attributes in a context class to represent location. First, there are many different types of locations that are of interest to
a managed networking environment, such as the location of a card in a networking device, the GPS coordinates of a
Customer Premise Equipment, the physical or logical address to deliver an Order to, and so forth. More generally,
location is more than just latitude and longitude, but also includes height, proximity, co-location with other entities,
orientation, and other factors. How can a single set of static attributes represent all of these different concepts?

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 108

Second, according to MDB principles, this maximizes reusability in an extensible and technologically-neutral manner.
The same concepts for different types of locations can be reused, partially or in their entirety.

Finally, this enables different parts of the Location model to be used for different purposes; it also enables the same
parts of the Location model to have different semantics attached to them. The physical characteristics of Location are
defined in these Location classes, while the semantics of the Location are defined in the ContextData classes.Put
another way, this approach allows the semantics of location to change as a function of context.

6.3.5.4 Operation of the Context-Aware Management Functional Block

A good overview of designing for context-awareness is provided in [i.2], [i.3] and [i.15].

Figures 6-7, 6-8 and 6-9 shows the Context-Aware Management Functional Block connected to a Semantic Bus (see
clause 6.3.4.4.4 for a description of the functionality of a Semantic Bus). The functional block diagram shown in these
figures should not prescribe an implementation. Rather, it describes the high-level Functional Blocks that are needed to
implement the needs of context-awareness. Different implementations may need to add other Functional Blocks to meet
their particular operational requirements.

Figure 6-21 shows some of the roles that can be used in a context-aware system. The overall (aggregate) context is used
to derive one or more of the five exemplary roles shown, which in turn are used to define behaviour appropriate for that
context. The five roles are described in Figure 6-21.

Figure 6-21: Contextual Roles

• Identities per Interaction Type. This role defines a set of processes that define the characteristics and
behaviour of a particular set of identities for objects in this context. Interaction type includes the set of entities
in the context that this object interacts with, along with how the interaction is done (e.g. which set of protocols
are used). For example, a passport is generally required to authorize travel to a foreign country, but is likely
not usable when a user logs onto their personal computer.

• AAA Mechanisms per Interaction Type. This role defines the applicable set of authentication, authorization,
and accounting interactions for this particular context. It may include other related operations, such as
auditing.

• Context-Aware Policies to Use. This role defines a set of policies that shall be produced by the Policy
Management Functional Block in response to changes in the current state deviating from the desired state for
this context.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 109

• Filters for Determining Relevance. This role defines a set of filters that determine the relative relevance of
ingested data and information for this particular context. This enables the system to:

1) adapt which data are gathered as context changes; and

2) modify its processing according to the contextual changes.

• Set of Goals to Achieve. This role defines a set of goals to achieve for this particular context. For example, if
the ratio of the users of the Platinum, Gold, Silver, and Bronze service classes change, then the ENI System
may need to generate a new set of policies that govern the behaviour of each service class in order to maximize
revenue.

Figure 6-22 shows an exemplary set of operations that occur when a context is analysed.

Figure 6-22: Context-Based Reasoning

Context may be modelled as Big Data, since there is an abundance of Big Data, and the critical factor is extracting value
from Big Data. The three operations above Big Data in Figure 6-22 describe a set of increasingly specific operations
that can be used to semantically annotate information.

A "feature" may be defined as an important element that helps describe and aid in the understanding of an object. For
example, edges and corners are points of interest in an image. Feature extraction reduces the number of resources
required to describe data. Reducing the number of features is important in analysis and reasoning, since if there are too
many features, it could cause overfitting in training.

Named Entity Recognition identities and maps entities that have specific names into models. For example, the sentence
"John worked at ETSI in the 1990s" could be analysed, producing three named entities: "John", "ETSI", and "1990s".
This could be annotated as "John[person] worked at ETSI[organization] in the 1990s[time_period]".

Semantic Analysis analyses the information for specific semantic concepts, searching on those concepts, and then
adding additional semantic relationships to enrich the information and provide more specific meaning. From a linguistic
perspective, this analyses text and finds sets of syntactic structures that are related to each other. This may be
represented as a graph, or network, of related words, phrases, and other elements of a sentence. From a machine
learning perspective, this computes metrics such as semantic similarity (i.e. the meaning of an object compared to the
meaning of other objects, where the comparison is done using synonymy, antonymy, hyponymy, hypernymy, and other
types of relationships). This is a practical and more computationally tractable approach than "absolute understanding",
since the latter requires a rigorous world model, which is np-complete.

Semantic Annotation is the process of providing annotations (either as metadata and/or in a specialized markup) to add
meaning to a given object. An example of semantic annotation was given in the named entity recognition description.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 110

6.3.6 Cognition Management Functional Block

6.3.6.1 Introduction

The Cognition Management Functional Block is a collection of Functional Blocks that are responsible for operating the
ENI Cognition Model (see clause 6.3.6.3.5) to understand ingested data and information in order to produce new data,
information, and knowledge. This means that the scope of the cognitive framework is conceptually operating above the
scope of both the infrastructure and the other Functional Blocks of the ENI System.

6.3.6.2 Motivation

The purpose of the Cognition Management Functional Block is to enable the ENI System to understand ingested data
and information, as well as the context and situation that defines how those data and information were produced. Once
that understanding is achieved, the Cognition Management Functional Block then provides the following functions:

• change existing knowledge and/or add new knowledge corresponding to those data and information;

• perform inferences about the ingested information and data to generate new knowledge;

• use raw data, inferences, and/or historical data to understand what is happening in a particular context and/or
situation, why the data were generated, and which entities could be affected; and

• determine if any new actions should be taken to ensure that the goals and objectives of the system will be met.

In each of the four functions above, the Cognition Management Functional Block uses existing knowledge to validate
and generate new knowledge. This means that new knowledge may be added, and in some cases, existing knowledge
may be changed. Hence, the ENI System uses a dynamically changing set of repositories (as opposed to other
management systems, which typically use repositories that use fixed content). A cognition framework uses multiple
diverse processes and technologies, including linguistics, computer science, AI, formal logic, neuroscience, psychology,
and philosophy, along with others, to analyse existing knowledge and synthesize new knowledge.

In addition, the Cognition Management Functional Block will not take actions; it will just determine what does not
agree with its Cognition Model and annotate accordingly. The actual actions to be taken will be computed by the
Situation Awareness Functional Block (see clause 6.3.7) and then implemented by the MDE and Policy Management
Functional Blocks (see clauses 6.3.8 and 6.3.9). The actions are embedded in a set of ENI Policies, and then sent
through the Denormalization and Output Generation Functional Block. The transformed set of ENI Policies is then sent
to the API Broker, which puts the set of ENI Policies in an appropriate API readable by the receiving entity (i.e. the
Policy Target, see ETSI GS ENI 019 [9]).

6.3.6.3 Function of the Cognition Management Functional Block

6.3.6.3.1 Introduction (informative)

Cognition seeks to understand concepts in a way similar to how the human brain understands concepts. This is done by
using a set of specialized data structures and computational procedures that mimic how the human brain operates.
Connectionist theories use this principle to define artificial neural networks. Other approaches, such as those involving
formal logic, Bayesian models, and deep learning, provide different algorithms, but are still based on the above premise.

Cognition can be used to process new data and information, along with new inferences, and compare those to
previously stored knowledge. The function of this Functional Block is to process and understand goals so that it can
institute behaviour that protects and meets those goals. This is done using knowledge and inferencing to explain why
input data occurred and how to adapt to it. Intelligent agents [i.7] and [i.8] are examples of entities that exhibit
goal-directed behaviour. Other examples are cognitive architectures that solve problems by creating their own sub-goals
to solve a problem; such cognitive architectures also learn from their experience.

Any entity that exhibits cognition will exhibit at least the following three functions:

1) interfaces that interact with the environment providing stimuli;

2) processing that can analyse and manipulate data, information, and knowledge; and

3) memories that hold data, information, and knowledge.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 111

These three functions provide cognitive control and cognitive capabilities, which differentiate a cognitive architecture
from other architectures.

Cognitive control includes reflexive and habitual behaviour that respond to long-term intentions. Cognitive capabilities
include functions that reflect processing as done in the human brain, such as perception, reasoning, learning and
planning. Critically, a system that uses cognition is able to explain why it acted a certain way in response to stimuli, and
more importantly, can learn whether that action was incorrect and, if correct, whether it was optimal.

There are two main approaches to building cognitive systems: symbolic and connectionist. Hybrid architectures, which
combine these approaches, are also starting to be researched.

6.3.6.3.2 The Symbolic Approach (informative)

This approach (also called computationalism) views cognition as a set of computational processes that act on a set of
structures that represent abstract (mental) representations of the world that can be manipulated by symbols. There is a
clear separation of cognition into low-level (e.g. sensorimotor) and high-level (e.g. planning and reasoning) processes.
This approach builds models of high-level cognition that resemble the structure of the brain (as opposed to
connectionist models, which build models that resemble neurological structures). The symbolic models obey rules for
processing data and information, as well as for interacting with other symbolic models. This leads to domain-specific
symbolic sub-systems for processing different types of data and information (e.g. language processing, reasoning, and
planning).

Each of the different domain-specific sub-systems are interconnected, forming a modular architecture. Actions in this
architecture can be modelled as operations acting on these sub-systems that collectively form a modular program. The
representations and actions taken in the cognitive architecture correspond to the real-world objects and their behaviour.
In other words, the symbolic abstractions used in the program are kept in sync with the external world. For example, in
robotic systems, the sensorimotor processing is responsible for this synchronization.

An AI programming language can be used to construct a cognitive model. This is ideal for knowledge-based problem
solving and learning. For example, the AI programming language could be used to construct a search through a problem
space, where a problem space defines a set of states and operators that manipulate the states. The solving of a problem
is achieved by traversing from an initial state to a final state using a set of operators. An example of such an architecture
is provided in [i.10]. In this architecture, a set of IF-THEN (imperative) rules are used to operate on the symbolic
representations. When the IF clause is satisfied, the set of actions in the THEN clause are executed. A high-level
functional architecture of ACT-R, one example of a symbolic cognitive architecture, is shown in Figure 6-23.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 112

Figure 6-23: The ACT-R Cognitive Architecture

The main modules of ACT-R are:

1) a visual module for identifying objects in the visual field;

2) a goal module for keeping track of current goals and intentions;

3) a declarative module for retrieving information from memory;

4) a manual module for controlling the hands; and

5) a production system for taking actions and coordinating the communication and performance of these
modules.

Actions in each of these modules take time, although they work concurrently. The time used within models is based on
human performance. This time can be provided as a real-time trace. The default cycle for taking an action in the
production system is 50 msec.

Information is passed between the modules and the central production system through buffers, which hold a limited
amount of information (this is motivated from psychological and neuroscientific studies). The central production system
matches the content of the buffers against the IF portions of its rules, and selects a single rule for execution. The
selection mechanism is based on the computation of expected utility of a rule for the current goal and the input. The
expected utility is learned from experience using Bayesian processing. A rule can have multiple actions, including
updating declarative or goal memory, modifying the value of a buffer, and issuing a command.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 113

6.3.6.3.3 The Connectionist Approach (informative)

This approach assumes that all cognitive processes are the same, and are derived from neural activation dynamics. In
contrast to the symbolic approach, connectionism argues that mental representations are not structured as explicit
models, but rather, are implicitly encoded in the activation values of neurons. This leads to the parallel processing of
many simple modules that are connected as a network. Information is stored in the form of weights between
connections.

Knowledge is not provided explicitly to the system, but rather, is learned by the system through the processing of
training samples. Learning algorithms extract statistical information from sample pairs of input and output values, and
the network adapts its connection weights to approximate the training data. Thus, task execution by connectionist
approaches requires suitable training data, and depends on both the network structure methodology and the learning
algorithm(s) used. A simplistic Recurrent Neural Network (RNN) is shown in Figure 6-24.

Figure 6-24: A Simplified Cognitive Processing Architecture using Neural Networks

RNNs use looping of the hidden layers back to themselves, which enables them to accept variable length sequences of
inputs. RNNs provide a way to process data where time and order are important. For example, with textual data, the
ordering of words is important. Changing the order or words can alter the meaning of a sentence. In contrast, in simple
feed forward networks, the hidden layer only has access to the current input. It has no "memory" of any other input that
was already processed. An RNN, by contrast, is able to "loop" over its inputs and see what has come before. This
provides context for processing words that come later in a sentence.

6.3.6.3.4 Cognitive System

A cognitive system is a system capable of independently developing strategies for and solving human tasks. A cognitive
system is both context- and situation-aware. As such, a cognitive system should understand, identify, and extract
contextual elements such as meaning, syntax, time, location, appropriate domain, regulations, user's profile, process,
task and goal. A cognitive system may draw on multiple sources of information, including both structured and
unstructured digital information, as well as sensory inputs (visual, gestural, auditory, or sensor-provided).

Typically, a cognitive system is built to perform comprehension, learning, and reasoning by mimicking those tasks as
done by a human. More formally, cognition is defined as the process of acquiring and understanding data and
information and producing new data, information, and knowledge. Cognitive systems may utilize artificial intelligence
(AI) methods such as machine learning, neural networks and deep learning as well as other methods such as multimodal
perception and declarative memory (i.e. the encoding, storage, and retrieval of facts and events).

The individual functional blocks of a cognitive system, as well as multiple cognitive systems, shall be able to
collaborate on a set of tasks. Once the set of tasks has been completed, the collective may disband.

An individual system shall be capable of taking over mission-critical functions on its own in case coordination or
communication with other collaborating entities is not functioning. The collective should furthermore optimally and
efficiently complete its tasks in such a situation.

A cognitive system should be able to adapt as information and context changes. A cognitive system should also be able
to adapt as goals and requirements evolve.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 114

A cognitive system need not be explicitly programmed to do its tasks. Rather, a cognitive system shall learn and reason
from their interactions with humans and from their experiences with their environment. Cognitive systems may use
deterministic mechanisms; however, cognitive systems should be mostly probabilistic in nature. Cognitive systems
should generate hypotheses, reasoned arguments and recommendations. Cognitive systems should be able to generate
explanations of their reasoning processes.

A cognitive system shall be able to reason about what actions to take, even if a situation that it encounters has not been
anticipated. It shall learn from its experience to improve its performance. It should be able to examine its own
capabilities and prioritize the use of its services and resources, and if necessary, explain what it did and accept external
commands to perform necessary actions.

Cognitive systems should be used to augment human decision-making and action processes. Cognitive systems are not
meant to replace humans, but rather, enhance them. An analogy is how Garry Kasparov, the one-time world chess
champion who lost to IBM Deep Blue in 1997, changed from being "against" computers to using computers. He
competed in in "freestyle" chess leagues, where players were able to compete in chess tournaments with the assistance
of computers. Kasparaov wrote: "Teams of human plus machine dominated even the strongest computers. Human
strategic guidance combined with the tactical acuity of a computer was overwhelming. We [people] could concentrate
on strategic planning instead of spending so much time on calculations. Human creativity was even more paramount
under these conditions".

6.3.6.3.5 Cognition Model

6.3.6.3.5.1 Introduction

A cognition model is a computer model of how cognitive processes, such as comprehension, action, and prediction, are
performed and influence decisions.

For the purposes of ENI, a cognition model mimics human cognition. More specifically, the perception portion provides
the notion of classifying data into pre-defined representations that are understood and relevant to the current situation;
memory is used to increase comprehension of the situation; actions are judged by how effectively they perform to
support the situation. These concepts are supported in cognitive psychology, where Minsky modeled this using three
interacting layers, called reactive (or subconscious), deliberative, and reflective [i.43].

Reactive processes shall take immediate responses based upon the reception of an appropriate external stimulus. In
humans, these processes correspond to instinctual and learned behaviours. In ENI, such processes may have no
understanding of the semantics of the external stimulus; rather, they shall respond with some combination of
pre-defined and learned reactions.

Deliberative processes shall receive data from and can send recommendations and/or commands to the reactive
processes. Deliberative processes need not interact directly with the external world. In humans, this part of the brain is
responsible for our ability to achieve more complex goals by applying short- and long-term memory in order to create
and carry out more elaborate plans. In ENI, these processes shall use short- and long-term memory. Furthermore, these
processes shall accumulate and generalize knowledge from experience, and combine that with what is learned from
other people and systems.

Reflective processes shall supervise the interaction between the deliberative and reactive processes. In humans, these
processes enable the brain to reformulate and reframe its interpretation of the situation in a way that may lead to more
creative and effective strategies. In ENI, these processes should consider what predictions turned out wrong, along with
what obstacles and constraints were encountered, in order to prevent sub-optimal performance from occurring again. In
ENI, these processes should also include self-reflection, which analyses how well the actions that were taken solved the
problem at hand.

6.3.6.3.5.2 ENI Cognition Model

A cognition model is used to both embed intelligence as well as to enable a system to learn and reason while taking
long-term intentions into account. The conceptual relationship between perception, comprehension, and action and the
three types of cognitive processing are shown in Table 6-1.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 115

Table 6-1: Types of Cognition and their Responsibilities

Reactive cognition assumes that a pre-defined set of actions are associated with each stimulus. As will be seen, even
though an action is taken, learning and reasoning functions of the ENI System will analyse the action(s) taken and
evaluate their effectiveness, both to satisfy current needs as well as the long-term goals of the system. Conceptually, this
is a "shortcut" through the processing steps that are required for deliberative and reflective processing.

Deliberative processing compares the input stimuli to short-term events, and their responses, which are related to it.
Planning is then initiated to consider different types of responses and their effect on the current needs of the system
being managed. These possibilities are then ranked according to how well each satisfies the current needs of the system.
The action that ranks the best is then executed. However, the set of possible responses, along with their stimuli, are
recorded for further analysis. Learning and reasoning functions will then compare this and other actions to see if the
collected set of actions were the optimal responses that could be taken.

Reflective processing compares the input stimuli to short- and long-term events, and their responses, which are related
to it. Planning is then initiated to consider different types of responses and their effect on the goals (both short- and
long-term) of the system being managed. These possibilities are then ranked according to how well each satisfies the
goals of the system being managed. The action that ranks the best is then executed. However, the set of possible
responses, along with their stimuli, are recorded for further analysis. Learning and reasoning functions will then
compare this and other actions to see if the collected set of actions were the optimal responses that could be taken.
Conceptually, reflective processing is a type of meta-management, where the current needs of the system being
managed are weighed against the goals that are to be achieved.

A simplified functional architecture that uses a Cognitive Model is shown in Figure 6-25.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 116

Figure 6-25: A Simplified Functional Architecture using a Cognitive Model

Figure 6-25 starts with the "outer" ENI closed control loop (environment → API Broker → Sensed Data → Processing
→ Actions → API Broker → Environment). The Processing portion of the ENI System (i.e. the six Inner Functional
Blocks) are redrawn to emphasize the cognitive processing that they collectively provide. This provides comprehension
of the perceived information. The actions are then sent to the API Broker, which delivers them back to the system being
managed by ENI.

Planning is defined as the task of finding a procedural course of action for a declaratively described system to reach its
goals while optimizing overall performance measures. In an ENI System, additional constraints, such as business rules
and most importantly, the set of goals to be achieved, determine the current set of goals and what specific measures to
optimize (e.g. time to solve, resources used, or a combination of these and other metrics). Finally, planning in an ENI
System also includes reviewing the courses of action that are available and predicting their expected (and unexpected)
results (e.g. "think before act").

The Cognition Management Functional Block shall use the ENI Cognition Model for planning and scheduling functions
to be performed in order to achieve a goal. Planning determines what steps to take, while scheduling decides when to
carry out a certain step. The planning process may use a finite state machine for planning. In this approach, the finite
state machine consists of two main states (an initial state and a goal state) that are connected through a set of one or
more actions defined as intermediate states.

The planning performed in the Cognition Management Model is optimized according to current context and situation.
For example, this may mean that the Finite State Machine(s) being used are updated with state transitions leading to a
new state. The Cognition Management Functional Block then determines if this new state has achieved its goal state, or
if not, is the new state closer or farther away from achieving its goal state. This information, along with an optionally
defined schedule, is then sent to the Situation Awareness Functional Block.

The mechanisms used in planning should know nothing about the specific problem that they are solving. This makes the
planning portion of the Cognition Management Functional Block independent of the goals that it is trying to achieve.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 117

Both AI- and non-AI based planners treat planning as a search problem. The program will traverse a potentially large
search space and find a plan that starts at the initial state and generates a final end state that contains the desired goals.

The Cognition Management Functional Block's planner uses short-term and long-term memories (part of the
Knowledge Management Functional Block), knowledge from the Context-Aware and Situation-Aware Functional
Blocks (represented as "Knowledge" in Figure 6-25), and Learning and Reasoning (part of the Cognition Management
Functional Block). The Planning and Cognitive Control Functional Block also contains part of the Cognition
Management Functional Block. The actions (i.e. recommendations and/or commands) are produced by the MDE and
Policy Management Functional Blocks.

NOTE: Add a new section in clause 6 that describes the operation of ENI as a whole, and the role played by the
Cognition Management system.

6.3.6.4 Operation of the Cognition Management Functional Block

NOTE: This is for further study in Release 3 (see clause 9), as this is dependent on an agreed upon Cognition
Model.

6.3.7 Situational Awareness Functional Block

6.3.7.1 Introduction

This clause describes the motivation for using situational awareness, the effect it has on the System Architecture, and
the benefits that it provides. See clause 6.3.5 for a description of the context-awareness Functional Block, and
clause 6.3.7.5 for a comparison of this Functional Block to the context-awareness Functional Block.

Situation awareness enables the system to understand what has just happened, what is likely to happen, and how both
may affect the goals that the system is trying to achieve. This implies the ability to understand how and why the current
situation evolves. ENI shall observe the evolving of different situations, examining them for patterns within each
situation and between different situations. Such knowledge shall be stored in the knowledge base of ENI. As such,
identifying changes in both the current situation as well as possible future situations are critical for understanding how
the environment is changing, and how those changes affect the goals that ENI is trying to achieve or maintain.

For example, security situation awareness could include being aware of the scope and impact of the attack, correlating
that with the behaviour of the adversary, so that effective counter-measures can be implemented.

6.3.7.2 Motivation

Networks are fundamentally heterogeneous in nature. Current as well as legacy devices have different software,
hardware, and use different protocols. Data may be represented in multiple ways. Hence, there is a need for a common
and scalable mechanism to abstract this heterogeneity so that their functionality can be represented in a normalized
manner. This would enable common approaches to be developed for enhancing interoperability between heterogeneous
systems, letting developers create new applications that use these common characteristics and behaviour.

6.3.7.3 Function of Situational Awareness

The working definition of situation awareness for ENI is:

 "The perception of data and behaviour that pertain to the relevant circumstances and/or conditions of a
system or process ("the situation"), the comprehension of the meaning and significance of these data and
behaviours, and how processes, actions, and new situations inferred from these data and processes are likely
to evolve in the near future to enable more accurate and fruitful decision-making".

It consists of five actions: gathering data (perception), understanding the significance of the gathered data (through both
facts and inferences), determining what to do (if anything) in response to a given event, making a decision (or set of
decisions), and performing those actions. It enables the application of context and policies to a particular situation, and
can use inference as well as historical data to understand what is happening at a particular context, why, and what (if
anything) should be done in response.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 118

6.3.7.4 Operation of the Situational Awareness Functional Block

6.3.7.4.1 Introduction

A situation shall be determined by the analysis of data and behaviour. The evolution of future situations is a function of
understanding the particular context, the factors determining the evolution of that context, and inferring what the future
situation will be based on the past and current data and behaviour. Semantics play an important role in understanding
the significance and cause of data and behaviour, and shall be used to understand the underlying meaning of data and
information that have been ingested.

A situation reflects an entity's contextual view of a collection of data and processes at a particular instance in time.
Shared situational awareness is therefore a consensus view of a number of individual views that each describes the same
situation. The ENI System may use any distributed mechanisms, such as agents, to realize shared situational awareness
when needed.

6.3.7.4.2 Use of Memory and the Cognition Model

The cognition model used in the ENI System may be quite involved. For example, the cognition model of FOCALE
was complex (since it modelled how the human brain thought) and very memory-intensive. The actual cognition model
of an ENI System is for further study (see clause 9).

However, an ENI System will, in general, have the following three types of memory modules that are used in the
Situational Awareness Functional Block:

• Working Memory is a memory of limited capacity for temporary storage of information. Information may be
manipulated and transformed in a working memory. It may consist of a one or more modules, where each
module is optimized for a particular category of information. It is used to analyse information before
committing it to short- or long-term memory.

• Short-Term Memory is a memory of limited capacity for temporarily holding, but not manipulating,
information. It is a cognitive memory that holds events and concepts that have significance to the managed
environment, such as names, numbers, and other managed objects.

• Long-Term Memory is a memory of moderate to large capacity where information may be indefinitely held.
Long-term memory examines information held in short-term memory and semantically augments it. Repeated
occurrences of the same information in short-term memory cause that information to be strengthened (e.g.
made more important and certain) in long-term memory. Different types of long-term memory exist; this is
beyond the scope of the present document.

6.3.7.4.3 Definition and Management of Goals to be Achieved

There are two types of goals used in this Functional Block. External goals are provided by the Operator or Designated
Entity of the Assisted System, and specify objectives that the Assisted System wants to achieve. Internal goals are
defined by ENI, and represent goals and/or sub-goals that the ENI System has defined in order to make solving the goal
easier. Both internal and external goals may be represented by a set of policies.

6.3.7.4.4 Architecture of a Cognitive Functional Block

A high-level functional block diagram of a situational awareness Functional Block is shown in Figure 6-26. The green
rounded rectangle represents the Situational Awareness Functional Block; all other rounded rectangles define a
Functional Block that is nested within the Situational Awareness Functional Block. The red arrows represent a closed
control loop within the Situational Awareness Functional Block.

The functional block diagram shown in Figure 6-26 does not prescribe an implementation. Rather, it describes the
high-level Functional Blocks that are needed to implement Situational Awareness. Different implementations may need
to add other Functional Blocks to meet their particular operational requirements.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 119

Figure 6-26: A Simplified Cognitive Processing Architecture using Neural Networks

Each of the boxes and rounded rectangles in Figure 6-26 may be modelled as a Functional Block. They are defined as
follows:

• Data from Knowledge Management, Context-Aware Management, and Cognition Functional Blocks:

- The combination of data and information from this set of Functional Blocks shall serve as input that
enables the Situation Awareness nested Functional Block determine the current state of the Assisted
System and its Operational Environment.

- The other main input comes from external goals received from the Assisted System (or its Designated
Entity), as well as internal goals defined by the ENI System that are necessary for its correct operation.

• System Capabilities, Constraints, Ease of Implementation, Policy Governance:

- System Capabilities are optional information that define the various functions that the ENI System can
perform. They may be specified by metadata. This may be used by this Functional Block to determine
the set of viable next actions to take, and choose among them.

- Constraints take two forms. External constraints are provided by the Operator or Designated Entity of
the Assisted System, and shall specify limitations that shall be obeyed when an ENI System defines its
recommendations and commands. Internal constraints shall be defined by ENI, and represent restrictions
that ENI imposes on its decision-making processes in order to achieve a set of goals.

- Ease of Implementation is typically represented as either metadata or using a probabilistic or fuzzy
logic mechanism. It enables the Situation Awareness Functional Block to take near-optimal courses of
action if taking an optimal course of action is too costly (e.g. in time, resources, or other factors).

- Policy Governance is a set of ENI-generated policies (see clause 6.3.9) that shall be used to manage the
operation of the Situation Awareness Functional Block.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 120

• Situation Awareness:

- This defines the ENI System's internal model of the state of the environment. Its input comes from the
Knowledge Management, Context-Aware Management, and Cognition Functional Blocks and from
external and internal goals. The Situation Awareness function shall be separate from decision-making
and action specification functions. This is because even if there is a perfect understanding of the
situation, incorrect decisions can still be made. The three following functions describe data analysis and
planning performed by this Functional Block.

- Perception produces an awareness of situational elements (e.g. objects, events, people, systems, and
environmental factors) and their current states (e.g. modes and locations). Perceived objects may be
stored in any of the three types of memories shown in Figure 6-26.

- Comprehension examines the situational elements that have been perceived in order to better understand
how they fit together; this helps characterize the situation as a whole, and how this situation affects the
goals that the ENI System is trying to achieve.

- Projection is focused on predicting the most likely evolution of the current situation, since it is typically
too costly and time-consuming to enumerate all possible situations. However, it may be possible in some
situations to specify more evolution predictions. This may be done in a constrained fashion on-line,
and/or a more complete fashion off-line. This model also reflects the differences between working,
short-, and long-term memory from cognitive psychology.

• Abilities, Experience, Training:

- These are represented by metadata, and provide inputs to enable an assessment of how positive the
Situational Awareness Functional Block is in performing a particular operation.

• Information Processing Mechanisms:

- Information processing analyses and optionally changes ingested information. It is made up of four
components: input, storage, processor, and output. See clause 5.3 of ETSI GS ENI 019 [9] for a
definition of those portions of the MPM that are used in the ENI Information Model, as well as
clause 5.3.2.7 and clause 5.3.28 of ETSI GS ENI 019 [9] for a description of ENI Extensions to the
MPM and the overall ENI Extended Policy Model, respectively.

NOTE: Information processing is for further study in Release 4 of the present document (see clause 9).

• Learning and Reasoning:

- Learning is the process of acquiring new, or modifying existing, data, information, or knowledge.
Reasoning is the process of understanding stimuli and the environment, verifying facts, making
inferences, applying a decision-making mechanism (e.g. logic), and then implementing a set of actions to
induce change. Both learning and reasoning are defined by different types of AI algorithms. Some
important examples of learning include:

 Non-associative learning is the strengthening of a response to a given stimulus due to repeated
exposure to that stimulus.

 Associative learning is the process of learning an association between different stimuli.

 Episodic learning is the production of a change in behaviour as a result of one or more events.

6.3.7.4.5 Leveraging Historical Situation Information

Historical information may be used if the algorithm being employed requires such data. It also may be used for trend
analysis. Historical information should be stored in an appropriate repository in either this Functional Block or in the
Repository Functional Block (see clause 6.3.4.5); the choice depends on whether this information is deemed important
for this Functional Block only, or for this Functional Block in particular.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 121

6.3.7.5 Difference between Context Awareness and Situational Awareness

The Context of an Entity describe the state and environment in which an Entity exists or has existed; it uses a
combination of historical data, as well as facts and inferences to do this. In contrast, situational awareness includes
contextual information and other inputs in order to understand the meaning and significance of data and behaviour of
the entire Assisted System and its operational environment; more importantly, situational awareness includes a
prediction of the evolution of the situation, and how that evolution affects the goals that the ENI System is trying to
achieve. Hence, context is one aspect of situational awareness.

6.3.7.6 Difference between Cognition Management and Situational Awareness

Cognition is the process of acquiring and understanding data and information and producing new data, information, and
knowledge. In contrast, situation awareness is the perception of data and behaviour that pertain to the relevant
circumstances and/or conditions of a system or process, the comprehension of the meaning and significance of these
data and behaviours, and how processes, actions, and new situations inferred from these data and processes are likely to
evolve in the near future.

The planner in the Cognition Management Functional Block is responsible for achieving a set of goals given a set of
constraints. This may include competing goals (e.g. cost vs. performance) as well as goals that change (e.g. considering
a service class less important if resources are scare and allowing resources to be taken from it to satisfy higher priority
services). The Cognition Management Functional Block uses the Cognition Model (see clause 6.3.6.3.5) as a guide to
determining when state transitions should be made. The output of the Cognition Management Functional Block is input
to the Situational Awareness Functional Block.

A situation is defined as a set of circumstances and conditions at a given time that may influence decision-making. This
may be constantly changing. Hence, a snapshot of the current situation, and its goals, are sent as input to the Cognition
Management Functional Block, which responds with progress on achieving the set of goals defined in that situation.

Hence, the difference between these two Functional Blocks is that the Cognition Management Functional Block is
responsible for ingesting, understanding, and producing new data, information and knowledge (by using the ENI
Cognition Model), whereas the Situational Awareness Functional Block is responsible for comparing progress on
achieving goals from the Cognition Management Functional Block to the achievement of its current goals.

6.3.8 Model Driven Engineering Functional Block

6.3.8.1 Introduction

The Model Driven Engineering (MDE) Functional Block is responsible for enabling software development to be
accomplished using models instead of code. The advantage of MDE is that models are, by definition, machine-readable.
Hence, they can be used to specify Functional Blocks, programs, and applications. An example of MDE is to generate
code directly from a model.

MDE represents an approach to software development where models are used in the understanding, design,
implementation, deployment, operation, maintenance and modification of software systems. A set of models may be
defined based on different viewpoints. Formally, a viewpoint is an abstraction of the function and behaviour of a system
using a selected set of architectural concepts; this facilitates focusing on a particular aspect or set of responsibilities of
the system. Model transformation tools and services are used to align the different models (e.g. deriving a set of data
models from an information model), and for generating code.

6.3.8.2 Motivation

Software systems continue to grow in complexity. While modelling is commonly used, models are often only used for
idea generation and design, and are not linked to implementation. Worse, models are not updated as frequently as code,
which increases the separation between the models and the implementation.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 122

One of the original reasons for using models was that concepts that were more familiar to domain experts could be more
easily represented in a way that those experts could understand (as opposed to having to know how to write and debug
code). Furthermore, this was deemed an easier and more straightforward way of specifying business log that was
independent of the platform and technology used. Modelling abstracts technical concepts to make them more accessible
to domain experts as well as more casual users. It focusses on aspects of what occurs in the domain of interest. See
[i.12] for more detailed information.

Thus, the motivation for using MDE is to focus on the business logic, not code, by using a methodology that uses
abstractions (instead of, for example, software libraries and function calls).

6.3.8.3 Function of the Model Driven Engineering Functional Block

The function of the MDE Functional Block is to decide how to implement the selected actions from the Situational
Awareness Functional Block. It uses model-driven engineering mechanisms to convert the actions into a form that
enables imperative, declarative, and/or intent policies to be constructed (by the Policy Management Functional Block).
More specifically, information and data models shall represent key grammatical concepts (e.g. nouns and verbs) of
policies, as well as other concepts that a policy grammar can refer to. Therefore, use of the model serves three important
purposes:

1) It ensures that all different data models used in the ENI System maintain a consistent definition and
understanding of concepts, even if a concept is represented using different data structures in different parts of
the ENI System.

2) It enables different policies at different levels of abstraction to communicate with each other using a common
vocabulary and data dictionary.

3) It decouples the need for policy (defined by the Situation Awareness Functional Block) from the specification
of policy (defined in the MDE Functional Block) from the implementation of policy (defined in the Policy
Management Functional Block).

6.3.8.4 Operation of the Model Driven Engineering Functional Block

6.3.8.4.1 Introduction

A high-level functional block diagram of an MDE Functional Block is shown in Figure 6-27. The functional block
diagram shown in Figure 6-27 does not prescribe an implementation. Rather, it describes the high-level Functional
Blocks that are needed to implement the needs of model-driven engineering. Different implementations may need to
add other Functional Blocks to meet their particular operational requirements.

Figure 6-27: A Simplified Functional Architecture of the MDE Functional Block

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 123

A high-level description of the flow of operations represented by Figure 6-27 is as follows.

The Situation Awareness Functional Block sends its current state and goal(s), along with any actions to take, to the
State Machine of the Model-Driven Engineering Functional Block. These action descriptions shall consist of text,
metadata, and/or modelled objects. This is used to synchronize the state of the Model-Driven Engineering Functional
Block with the state of the Situation Aware Management Functional Block. The correlation between these actions and
the internal and external goals of the ENI System is attached as metadata, and will be embedded into the resulting ENI
Policy Rules.

The Model-Driven Engineering Functional Block shall contain multiple active repositories. The two most important are
the Information Model Repository and the Data Model Repository. The Information Model Repository shall contain the
authoritative information model of record, and may contain one or more copies of that information model that are used
to process and evaluate changes to be made to the information model of record. Changes are made to the information
model of record to reflect new information that has been learned, including changes to existing information. Any
changed information shall be verified by at least one other independent ENI Functional Block before a change is made
to the information model of record.

The information model of record shall be used as the authoritative version of the model by all other ENI Functional
Blocks. All data models used by ENI Functional Blocks shall be derived from the information model of record.

The Data Model Repository shall contain one or more data models. Each ENI Functional Block may use one or more
data models to suit its needs. For example, an LDAP directory and an RDBMS may be used to store information about
the same or different managed objects. Each data model shall be optimized to reflect the needs of the Functional Block
that is using it. For example, a data model may flatten a set of objects defined in the information model of record to
produce a single class that contains all of the attributes, operations, constraints, and behaviours of the information
model classes; this may be done to increase and simplify access to data and behaviour. As another example, a data
model may restructure and translate data into different data structures (e.g. in order to facilitate protocol operations), as
long as in so doing, it does not alter the meaning of the original data.

The Model-Driven Engineering Functional Block should maintain one or more active repositories for applicable
ontologies. This is in order to verify the semantics of applying the recommended set of actions from the Situational
Awareness Functional Block.

The set of actions defined by the Situational Awareness Functional Block are parsed by the Action Parser, which
verifies the structure and meaning of the action descriptions, and ensures that the Model-Driven Engineering Functional
Block understands the actions that the Situational Awareness Functional Block wants to take. The first part of this
process is to verify the syntax used in the action description. For example, a Customer is a type of Named Entity (i.e. it
shall exist in a data model as an instance of a Customer object); if that is not the case, then an error is produced. Any
errors and warnings found are sent back to the Situational Awareness Functional Block, along with as much context as
the Action Parser can provide; work in the Model-Driven Engineering Functional Block is then stopped. Continuing the
Customer example, the Action Parser could annotate that the usage of a term indicates that it could possibly be a
Customer, but that no Customer with such a name was found. Two mechanisms of doing this parsing are:

1) using modelled objects to help understand words and phrases in the action description; and

2) using the models to build an (internal) language, whose syntax and semantics are formally defined, and then
using the syntax and semantics of that formal language to compile the action descriptions.

The Model-Driven Engineering Functional Block uses its state machine, along with any applicable models and
ontological information, to determine how best to implement the recommended set of actions of the Situational
Awareness Functional Block. A principal concern is to check the semantics of the recommended set of actions, and any
effects that those semantics may have on the running system. Clause 6.3.4.4.1 defined how knowledge is represented in
the ENI System. The Model-Driven Engineering Functional Block uses this approach to check the semantics of the
recommended set of actions to be applied by iteratively constructing a multigraph, where the nodes are derived from the
data models and the edges are semantic relationships that relate one or more ontologies to that node. In addition, some
nodes may be derived from concepts in an ontology, and its edges are semantic relationships that relate one or more
models to that node.

The Action Validation logic then compares the set of recommended actions from the Situational Awareness Functional
Block to the multigraph to ensure that the recommended set of actions are safe. In particular, it examines the set of
semantic relationships, looking for semantic closeness between managed entities that may be affected by the set of
actions. If it is deemed unsafe, then errors and warnings are sent back to the other Functional Blocks of the ENI System,
and the actions are not taken.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 124

If the actions are safe, then the Model-Driven Engineering Functional Block takes those actions and applies them to all
applicable data models. This constructs an updated data model, reflecting the effects that the set of actions will have in
the runtime system when the set of actions is applied. This defines important data and information that will indicate the
success or failure of each action when deployed.

The set of actions are constructed into an internal format, called the Policy Intermediate Form. This is the start of
defining a set of policies that represent the formal translation of the set of actions sent by the Situational Awareness
Functional Block into a set of ENI Policy Rules. Formally, this is a compilation stage that connects the initial actions of
the compiler (in the Model-Driven Engineering Functional Block) to their final output form (in the Policy Management
Functional Block). The Policy Intermediate Form may be structured in a tree or graph format. The relationship between
the set of actions and the current goal(s) of the ENI System should be embedded in each ENI Policy Rule using
metadata or other similar mechanisms. These Policy Definitions take the form of text, and are output to the Policy
Management Functional Block, which completes the compilation process by producing a set of imperative, declarative,
and/or intent policies for the set of actions produced by the Situational Awareness Functional Block.

6.3.8.4.2 Knowledge Data Fusion, Transformation, and Processing

Data fusion is necessitated when heterogeneous systems are required to interoperate in an open world, where the syntax
and semantics of data provided by a sensor or a human is domain-specific and does not conform to any one specific
vocabulary. This requires the translation of each vocabulary used into a common set of concepts and terms, so that the
data can be integrated. The ENI System shall perform data fusion in order to associate different definitions of the same
concept with each other; this is used to provide a more comprehensive understanding of situations.

6.3.8.4.3 Knowledge Transformation into Policy Information

Some systems may need to know additional data, information, and/or knowledge concerning how to deploy and execute
a set of ENI Policy Rules. For example, pre- and/or post-conditions, or best current practices, may be useful to execute,
monitor, and validate that the actions of an ENI Policy Rule had the desired effect. There are two options for conveying
this knowledge:

1) If there is a distributed set of ENI Systems, then this knowledge sharing should be in the form of models,
ontologies, and ENI Policy Rules to ensure that each ENI System instance is working on the same knowledge.

2) If the knowledge is being sent to an external, non-ENI System component (e.g. the Assisted System, or an
application), then this knowledge sharing shall be in the form of metadata. This lowers the attack surface of the
ENI System by ensuring that external entities are not allowed to see or edit models or the knowledge derived
from them directly.

6.3.9 Policy Management Functional Block

6.3.9.1 Introduction

This clause describes the motivation for using policy management, the effect it has on the System Architecture, and the
benefits that it provides. This Functional Block provides a set of uniform and intuitive mechanisms for providing
consistent recommendations and commands. These characteristics give rise to the following requirements:

• ENI shall provide the ability to transform data and information from its own internal format to format that
facilitates generating outputs that are understandable by the Assisted System and/or its Designated Entity.

• ENI shall use a set of models, including data types and data structures for producing outputs that are
understandable by the Assisted System and/or its Designated Entity.

• Data Denormalization may be realized as a Functional Block that is separate from the Output Generation
Functional Block. This adheres to the Single Responsibility Principle [i.9] and enables a more scalable and
robust system to be designed and built.

6.3.9.2 Motivation

Management involves monitoring the activity of a system, making decisions about how the system is acting, and
performing control actions to modify the behaviour of the system. The purpose of Policy Management is to ensure that
consistent and scalable decisions are made governing the behaviour of a system.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 125

Organizations are policy-driven entities. Policy is a natural way to express rules and restrictions on behaviour, and then
automate the enforcement of those rules and restrictions. However, the number of policies can be very large
(e.g. 100 000+), and the relationships between policies can be complex. In addition, policy can change contextually. For
example, different actions can be taken based on type of connection, time of day, and network state.

The present document uses the following definition of Policy, see [7], [8] and [i.1]:

 "Policy is a set of rules that is used to manage and control the changing and/or maintaining of the state of one
or more managed objects".

Policy is a mechanism for controlling the behaviour of an Entity, not the actual end result. For example, an access
control list is created and managed using policy, but is not a policy instance or type of policy.

Policy is not absolute. The actions of a policy shall be verified. In addition, a goal of ENI is to continually evaluate and
optimize policy, so that it becomes more effective with experience.

The size and complexity of modern systems has resulted in the need for automating management operations. If Policies
are coded into a management component, their lifecycle becomes interlocked with that component, and their behaviour
can only be altered by recoding the component. Hence, Policies should be defined and management independent from
management components to enable policies to be changed and reused without affecting the lifecycle of the management
system. It also enables the Policies to adapt to evolutionary changes in the system being managed, as well as to
accommodate new application requirements. Ultimately, the business and operational policies that govern the
construction and deployment of configuration changes are more important than the configuration changes
themselves!

6.3.9.3 Modelling and Representing Types of Policies

6.3.9.3.1 Introduction

Management involves monitoring the activity of a system, making decisions about how the system is acting, and
performing control actions to modify the behaviour of the system. The purpose of policy is to ensure that consistent
decisions are made governing the behaviour of a system.

ENI is a model-driven system. Hence, it uses a single information model that can be used to represent different types of
policies (e.g. imperative, declarative and intent). This is described in ETSI GS ENI 019 [9].

6.3.9.3.2 Reuse of the MEF Policy Model

Currently, the only industry information model that defines a unified model for representing different types of policies
is the MPM [8]. A unified policy model enables different types of policies to be used to accomplish tasks independent
of the type or structure of policy. It also enables one type of policy to call any other types of policy. Therefore, ENI
shall reuse the MPM as a starting point to develop its policy information model.

In the present document, reuse of a model means to incorporate text and graphics from an external modelling standard
into the present document. Specifically, the ENI model for the present document shall reuse the MPM as it, without any
changes.

See clause 5.3 of ETSI GS ENI 019 [9] for a definition of those portions of the MPM that are used in the ENI
Information Model, as well as clause 5.3.2.7 and clause 5.3.28 of ETSI GS ENI 019 [9] for a description of ENI
Extensions to the MPM and the overall ENI Extended Policy Model, respectively.

6.3.9.3.3 Reuse of the MEF Core Model

The MPM is derived from the MCM [7]. Specifically, the MPM model elements are all derived from an MCM
superclass. The MCM is a generic model that defines managed entities (e.g. products, services, and resources),
unmanaged entities (e.g. locations and cell towers), entities that are controlled by other managed entities (e.g. IP and
MAC Addresses), and metadata. Since the MPM is derived from the MCM, any object (managed or otherwise) defined
in the MCM may be defined as a target of an ENI Policy.

In the present document, the ENI model shall reuse MCM model elements referenced by the MPM as it, without
changes.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 126

See clause 5.2 of ETSI GS ENI 019 [9] for a definition of those portions of the MCM that are used in the ENI
Information Model, as well as clause 5.2.3 and clause 5.2.4 of ETSI GS ENI 019 [9] for a description of ENI
Extensions to the MCM and the overall ENI Extended Core Model, respectively.

6.3.9.3.4 Types of Policies Used in ENI

As described in [7], [8] and [i.1], there are three different types of policies that are defined for an ENI System:

Imperative policy: a type of policy that uses statements to explicitly change the state of a set of targeted objects.
Hence, the order of statements that make up the policy is explicitly defined. An example of an imperative policy, using
informal English, is:

 WHEN an Alarm is received
IF the severity of the Alarm is Critical
THEN execute the CriticalAlarm Policy

In the present document, Imperative Policy will refer to policies that are made up of Event, Condition, and Action
clauses.

Declarative policy: a type of policy that uses statements from a formal logic to describe a set of computations that need
to be done without defining how to execute those computations. Hence, state is not explicitly manipulated, and the order
of statements that make up the policy is irrelevant. An example of a declarative policy, using First Order Logic, is:

 ∃x∃y (Customer(x) ∧ SLA(y) ∧ have(x, y))

The English equivalent is:

 Some Customers have an SLA

In the present document, Declarative Policy will refer to policies that execute as theories of a formal logic. The syntax
of a declarative policy typically uses some type of first order logic, though predicate and description logics may also be
used.

Intent policy: a type of policy that uses statements from a restricted natural language (e.g. an external DSL) to express
the goals of the policy, but does not specify how to accomplish those goals. In particular, formal logic syntax is not
used. Therefore, each statement in an Intent Policy may require the translation of one or more of its terms to a form that
another managed functional entity can understand.

In the present document, Intent Policy will refer to policies that do not execute as theories of a formal logic. They
typically are expressed in a restricted natural language, and require a mapping to a form understandable by other
managed functional entities. An example of an intent policy is:

 No processor shall run at more than 75 % utilization

The above example indicates different types of ambiguity that may exist in an intent statement. For example, does the
term "processor" include both CPUs and GPUs? What about ASICs that have processing capabilities? As another
example, the term "utilization" could refer to memory, I/O operations, or processor utilization.

A further example is:

 VoLTE drop rate is less than 0,5 % in cities greater than 1 000 000 people

In this example, the term "drop rate" could refer to average, minimum, or maximum drop rate. In addition, the clause
"in cities greater than 1 000 000 people" shall be translated to a specific city or area by the ENI System.

An ENI System may use any combination of imperative, declarative, and intent policies to express recommendations
and commands to be issued to the system that it is assisting and/or managing. Each of these types of policies are defined
in MEF 95 [8].

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 127

6.3.9.3.5 Overview of a Unified Policy Information Model

6.3.9.3.5.1 Introduction

A unified policy information model serves as a common language that enables concepts used by different policy authors
to be mapped to equivalent concepts in other levels. It also enables one type of policy to invoke other types of policies.
The specification is based on the MEF Policy Model (MPM) [8]. In this model, any policy, regardless of its structure
and semantics, shall be abstracted into a set of statements. Each statement may in turn be abstracted into a set of
clauses. Each clause is made up of a set of policy elements. Thus, the type of MPMPolicyStructure shall determine the
type of statements that it can contain; this in turn shall determine the types of clauses and policy elements that are
allowed by this type of statement. The MPM is described in ETSI GS ENI 019 [9].

ENI Policies contain commands and/or recommendations. ENI Policies, as defined in the MPM, may affect the
behaviour of managed entities under the management of an ENI System. The MCM defines managed entities of interest
to an ENI System. Hence, ENI Policies are able to affect managed entities defined in the MCM since the MPM is also
based on the MCM.

6.3.9.3.5.2 Representing Different Types of Policies with a Single Information Model

This clause has been moved to ETSI GS ENI 019 [9], where it has also been enhanced.

6.3.9.4 Processing Policies

6.3.9.4.1 Introduction

Clause 6.3.9.3.2 described three types of policies that may be used by an ENI System (i.e. imperative, declarative, and
intent). Clause 6.3.9.3.3 described the important classes of the information model that will be used to represent these
policies. The following clauses first describe options for representing and processing policies, then describe the types of
different languages that may be used to formally define policies, and conclude with differences between policies that
are used within an ENI System versus policies that are used between an ENI System and the Assisted System.

6.3.9.4.2 Constructing Policies: Parsers vs. Compilers vs. Interpreters

Policies used in an ENI System shall be derived from a formal grammar. This simplifies the parsing, compiling, or
interpreting of the policy, and increases the understandability of the policy. It also simplifies debugging.

From a linguistics point-of-view:

• the syntax of a grammar is the set of rules used in a grammar to create sentences;

• the semantics of a grammar is the meaning of a sentence;

• the pragmatics of a grammar is the meaning of a sentence in a particular context.

In general, each of these linguistics aspects should be verified for each type of policy used in an ENI System.

Each type of policy used in an ENI System shall be verified using either a parser and/or a compiler. Multiple parsers
and/or compilers may be used in the verification process.

Once verified, each type of policy used in an ENI System may be either compiled into executable code or interpreted
without having to perform the compilation process.

6.3.9.4.3 Policy Languages

6.3.9.4.3.1 Introduction

Each type of policy in an ENI System shall be written using either a Controlled Language, a Domain-Specific Language
(DSL), or a General Purpose Language (GPL).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 128

6.3.9.4.3.2 Controlled Languages

A Controlled Language is a restricted version of a language that has been engineered to meet a particular purpose. The
most common form of Controlled Language is a Controlled Natural Language, which is a restricted version of a Natural
Language, such as English.

More formally, a Controlled Natural Language is a restricted version of a single Natural Language (i.e. the base
language) that uses a subset of the grammar of the base language. A Controlled Natural Language preserves most of the
properties of the base language, so that speakers of the base language can correctly understand the majority of texts of
the Controlled Natural Language. The vocabulary of a Controlled Natural Language is also restricted (typically to
1 000 words or less). Two examples of a Controlled Natural Language is SBVR (Semantics of Business Vocabulary and
business Rules) [i.31] and Attempto Controlled English [i.32].

6.3.9.4.3.3 DSLs

A Domain Specific Language (DSL) is a small human-understandable language that uses a higher level of abstraction to
communicate and configure software systems for a particular application domain. The term "higher level of abstraction"
means that some programming constructs are simplified (possibly at the expense of the associated details being more
clearly understood). Examples include constructs that determine the flow of execution of a program, the use and
specification of functions, and the types of data structures allowed. It emphases simplicity and the comprehension by
application domain experts at the expense of expressiveness and precision.

An important difference between DSLs and General Purpose Languages (GPLs) is that DSLs are typically designed to
be used by non-programmers that are experts in the application domain that the DSL is addressing. This is not always
true, as DSLs exist for different specialized tasks (e.g. network configuration vs. network monitoring).

There are two main types of DSLs, referred to as internal and external DSLs. An internal DSL does not require a
custom compiler or interpreter, because it is embedded into its base language (GPL); hence, its grammar is restricted to
a subset of the grammar of the base language. In contrast, an external DSL requires the creation of its own grammar that
exists outside of a base language, and hence, requires a compiler or interpreter to execute or interpret it.

6.3.9.4.3.4 GPLs

A General Purpose Language (GPL) is a programming language that can address a wide variety of problems and
domains. It emphases expressiveness and precision at the expense of simplicity. It is typically used by professional
programmers and developers.

6.3.9.4.3.5 Recommendation

The recommendations for languages used by an ENI system are as follows:

• Intent Policies should use an external DSL, in order to maximize the ability of non-programming
constituencies to define and use intent policies.

• Declarative Policies should use either a dedicated logic programming language or a DSL (internal or external)
built specifically to handle the logic formalisms used.

• Imperative Policies may use either an appropriate DSL (internal or external) or a GPL.

The ENI system should include the intent grammar specification for Intent Policies. This facilitates the intent translation
process and increases interoperability.

While Controlled Natural Languages are attractive for Intent Policies, they would require significant work to develop
and maintain, and will not be further discussed in this release of the present document.

6.3.9.4.4 Policy Scope

6.3.9.4.4.1 Introduction

There are two different uses of Policies processed by an ENI System. The first use is when an External Entity (e.g. an
Operator) sends a Policy (of any type) to the ENI System that affects the behaviour of the Assisted System (or its
Designated Entity). This means that the ENI System will translate the Intent Policy, process it, and send
recommendations and/or commands back to the Assisted System (or its Designated Entity).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 129

The second use is when an External Entity sends a Policy (of any type) to the ENI System that affect the behaviour of
the ENI System. This means that the ENI System will translate the Intent Policy, process it, and act on it to affect its
own behaviour (e.g. add or remove knowledge from the Knowledge Management Functional Block, or define new goals
that it should try and achieve).

For either use of Policies, the Functional Blocks of an ENI System are conceptualized into two categories: External and
Internal.

The External Functional Blocks are the Data Ingestion, Data Normalization, Data Denormalization, and Output
Generation Functional Blocks. The Internal Functional Blocks are the other six Functional Blocks.

External Functional Blocks communicate to the API Broker using External Reference Points (see clauses 7.2 and 7.3).
Internal Functional Blocks communicate using Internal Reference Points via the Semantic Bus (see clauses 7.6 and 7.7).

6.3.9.4.4.2 Policy Communication Requirements

The following requirements apply to both uses of Policies (i.e. external to affect the behaviour of an External Entity vs.
internal to affect the behaviour of an ENI System).

All Policy communication between an ENI System and the Assisted System shall use an API Broker.

All Policies sent to and received from the API Broker shall use an appropriate External Reference Point (e.g. Eoss-eni-pol,

see clause 6.3.9.5). The External Reference Point is determined by the entity that the API Broker is communicating
with. For example, if the communicating entity is the OSS, then it shall use the Eoss-eni-pol External Reference Point. As
another example, if the communicating entity is the end user, then it shall use the Eusr-eni-pol External Reference Point.

6.3.9.4.4.3 Policies that Affect the Behaviour of an External Entity

The following steps shall be used to process Policies that affect the behaviour of an External Entity:

1) The Data Ingestion Functional Block shall accept input Policies only through designated External Reference
Points (see clause 6.3.9.5).

2) The ENI System shall send an acknowledgement of receiving the Policy through the appropriate External
Reference Point (see clause 6.3.9.5).

3) The Normalization Functional Block shall use a dedicated Internal Reference Point (i.e. Iing-norm, see
clause 6.3.9.5) to accept Policies from the Data Ingestion Functional Block.

4) The Normalization Functional Block shall use a dedicated Internal Reference Point (i.e. Inorm-sem, see
clause 6.3.9.5) to send Policies from the Normalization Functional Block to the Semantic Bus (see
clause 6.3.4.4.4).

5) The input Policy is processed using the relevant ENI Internal Functional Blocks, and transformed to a set of
recommendations and/or commands, which is published using the Semantic Bus.

6) The ENI System shall send one or more status messages to the External Entity using the appropriate External
Reference Point (see clause 6.3.9.5). The number and type of status messages are defined by the External
Entity.

7) The Data Denormalization Functional Block shall use a dedicated Internal Reference Point (i.e. Isem-denorm, see
clause 6.3.9.5) to accept Policies from the Semantic Bus.

8) The Data Denormalization Functional Block shall use a dedicated Internal Reference Point (i.e. Idenorm-out, see
clause 6.3.9.5) to send Policies to the Output Generation Functional Block.

9) The Output Generation Functional Block shall use an appropriate External Reference Point (e.g. Eoss-eni-pol, see
clause 6.3.9.5) to send Policies to the API Broker, which shall subsequently send the recommendations and/or
commands to the appropriate External Entity (the OSS in this example) via an API.

10) The External Entity shall acknowledge receipt of the set of recommendations and/or commands through the
appropriate External Reference Point (see clause 6.3.9.5).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 130

DSLs and/or GPLs may be used to build Policies that are used within an ENI System. The same type of Policy should
be used consistently throughout an ENI System for the same purpose by the same constituency. For example, if Intent
Policies are used for business tasks in one Functional Block, they should be used for business tasks in the other
Functional Blocks.

6.3.9.4.4.4 Policies that Affect the Behaviour of an ENI System

The following steps shall be used to process Policies that affect the behaviour of an External Entity:

1) The Data Ingestion Functional Block shall accept input Policies only through designated External Reference
Points (see clause 6.3.9.5).

2) The ENI System shall send an acknowledgement of receiving the Policy through the appropriate External
Reference Point (see clause 6.3.9.5).

3) The Normalization Functional Block shall use a dedicated Internal Reference Point (i.e. Iing-norm, see
clause 6.3.9.5) to accept Policies from the Data Ingestion Functional Block.

4) The Normalization Functional Block shall use a dedicated Internal Reference Point (i.e. Inorm-sem, see
clause 6.3.9.5) to send Policies from the Normalization Functional Block to the Semantic Bus.

5) The input Policy is processed using the relevant ENI Internal Functional Blocks, and transformed to a set of
recommendations and/or commands, which is published using the Semantic Bus (see clause 6.3.4.4.4).

6) The transformed set of recommendations and commands are then processed by the ENI System.

7) The ENI System shall send one or more status messages to the External Entity using the appropriate External
Reference Point (see clause 6.3.9.5). The number and type of status messages are defined by the External
Entity.

8) The External Entity shall acknowledge receipt of the set of recommendations and/or commands through the
appropriate External Reference Point (see clause 6.3.9.5).

The Policy Management Functional Block shall use the following Internal Reference Point to communicate with other
ENI Functional Blocks:

• Iing-norm is used to transfer data from the Data Ingestion Functional Block to the Data Normalization Functional
Block. Ingested data may include all types of data, information, knowledge, Policies, and metadata sent from
the API Broker through any of the External Reference Points that supply inputs to the Data Ingestion
Functional Block.

• Inorm-sem is used to transfer normalized data from the Data Normalization Functional Block to the Semantic Bus.
This is a uni-directional Internal Reference Point, meaning that data for processing shall only flow from the
Data Ingestion Functional Block to the Data Normalization Functional Block.

• Isem-pm is used to transfer all types of data, information, knowledge, Policies, and metadata from the Semantic
Bus to the Policy Management Functional Block that the Policy Management Functional Block has subscribed
to. The Policy Management Functional Block may send any type of data, information, knowledge, policies,
and metadata to the Semantic Bus that it deems necessary.

• Isem-denorm is used to transfer data from the Semantic Bus to the Data Denormalization Functional Block. These
data may be data, information, knowledge, policies, and metadata from any internal ENI Functional Block that
is necessary to communicate to the Assisted System or its Designated Entity.

• Idenorm-out is used to transfer data from the Data Denormalization Functional Block to the Output Generation
Functional Block, where it will be sent by an appropriate External Reference Point (see Figure 7-2 and
clauses 7.2 and 7.3 for their definitions). Data output may include all types of data, information, knowledge,
policies, and metadata.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 131

6.3.9.5 Function of the Policy Management Functional Block

The function of the Policy Management Functional Block is to turn the input from the Model Driven Engineering
Functional Block into a set of ENI Policies that contain recommendations and/or commands. This enables a common
mechanism for an ENI System to communicate actions to take to an entity. The ENI Policies may be any combination
of imperative, declarative, and/or intent policies.

The Policy Management Functional Block shall use the following External Reference Points to send ENI Policies to the
API Broker for subsequent transmission to any external entity:

• Eoss-eni-pol defines Policies and associated information and/or metadata exchanged between the OSS-like
Functionality and the ENI System that control behaviour (including services and resources) for the Assisted
System.

• Eapp-eni-pol defines Policies and associated information and/or metadata exchanged between the BSS-like
functionality and the ENI System that control behaviour (including services and resources) for the Assisted
System.

• Ebss-eni-pol defines Policies and associated information and/or metadata exchanged between the BSS-like
functionality and the ENI System that control behaviour (including services and resources) for the Assisted
System.

• Eusr-eni-pol defines Policies and associated information and/or metadata exchanged between Applications and the
ENI System that control behaviour (including services and resources) for a user (or an agent acting on behalf
of the user).

• Eor-eni-pol defines Policies and associated information and/or metadata exchanged between the Orchestrator and
the ENI System that control behaviour (including services and resources) for the Assisted System.

The Policy Management Functional Block shall use the following Internal Reference Point to communicate with other
ENI Functional Blocks:

• Isem-pm is used to transfer all types of data, information, knowledge, policies, and metadata from the Semantic
Bus to the Policy Management Functional Block that the Policy Management Functional Block has subscribed
to. The Policy Management Functional Block may send any type of data, information, knowledge, policies,
and metadata to the Semantic Bus that it deems necessary.

6.3.9.6 Operation of the Policy Management Functional Block

6.3.9.6.1 Introduction

The Policy Management Functional Block is used to send recommendations, commands, and associated data and
metadata to external entities. Imperative, declarative, and/or intent policies may be used. More specifically, all classes
in the MPM inherit from MCMPolicyObject, which in turn inherits from MCMEntity. The
MCMEntityHasMCMMetaData aggregation defines which MCMMetaData objects may be aggregated by which
MCMEntity objects. This aggregation is owned by the MCMEntity class, which means that all of its subclasses inherit
this aggregation. Hence, both ENI Policies (represented as subclasses of the MPMPolicyStructure class) and their
components (represented as subclasses of the MPMPolicyComponentStructure class) may all have zero or more
subclasses of the MCMMetaData class.

MCMMetaData is used to describe as well as prescribe information that is associated with a given MCMEntity. For
example, best current practices and version information are examples of descriptive This is shown in Figure 6-28.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 132

Figure 6-28: Policies and Metadata

6.3.9.6.2 The Policy Continuum

Figure 6-29 illustrates a key concept of Policy, called the Policy Continuum [7], [8], [i.1], [i.2] and [i.3].

Figure 6-29: The Policy Continuum

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 133

The purpose of the Policy Continuum is to formally differentiate between the needs of different constituencies in
defining and expressing policy. Each constituency is made up of a set of users that have similar business needs, and
more importantly, use similar concepts and terminology. For example, business users and product managers use
significantly different terminology than application developers or network administrators. The number of continua in
the Policy Continuum shall be determined by the applications using it. There is no fixed number of continua.
Figure 6-29 shows five, because this enables a set of much smaller translations of terms (e.g. from a representation
without technology, to one with technology while being device, vendor, and technology independent, to successively
lower levels that fix each of these three dimensions). However, Figure 6-29 is used to illustrate the principles of the
Policy Continuum, not to define the type or number of continua used in ENI.

6.3.9.6.3 Policy Management Architecture

6.3.9.6.3.1 Policy Input

Figure 6-30 shows the set of External Reference Points that may be used to send policies to the ENI System. Five types
of Policy Users (the End-User, an Application, the OSS, the BSS, and the Orchestrator) shall be able to send Policies to
the ENI System. In addition, certain types of Applications may be able to submit knowledge specific to a set of Policies
that they want to execute.

Figure 6-30: Policy Input External Reference Points

There are five types of input Policies, plus the ability to ingest information and knowledge that applies to policies from
a particular source, that are considered in the present document. They are:

1) End-User Policies. End-users, such as Subscribers, shall use the Euser-eni-pol External Reference Point to send
Policies to the ENI System.

2) Application Policies. Different types of Applications shall use the Eapp-eni-pol External Reference Point to send
Policies to the ENI System.

3) OSS Policies. Most OSSs and BSSs currently do not have a standardized Policy Language. This is mitigated
by the use of a dedicated External Reference Point. Hence, the OSS will shall use the Eoss-eni-pol External
Reference Point to send OSS Policies to the ENI System.

4) BSS Policies. Most OSSs and BSSs currently do not have a standardized Policy Language. This is mitigated
by the use of a dedicated External Reference Point. Hence, the BSS shall use the Ebss-eni-pol External Reference
Point to send BSS Policies to the ENI System.

5) Orchestrator Policies. Orchestrators shall use the Eor-eni-pol External Reference Point to send Policies to the
ENI system.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 134

Related external knowledge and information ingestion for input policies are:

• Application Knowledge. The External Reference Point Eapp-eni-kno may be used to add application-specific
knowledge to the Knowledge Repositories of ENI. For example, such knowledge could describe particular
semantics that an application wants to associate with a set of Policies.

Related internal knowledge and information for input policies are:

• Application Knowledge. The Internal Reference Point Isem-pm may be used to add internal knowledge from
other Functional Blocks of the ENI System that is relevant to the processing of any ingested policy. For
example, such knowledge could include the current context and situation, as well as historical events.

6.3.9.6.3.2 Policy Acknowledgements and Output

Figure 6-31 shows the set of External Reference Points that may be used to send policies to ENI. Four types of Policy
Users (the End-User, an Application, the OSS, and the BSS) shall be able to receive Policies from ENI. In addition,
certain types of Applications may be able to receive knowledge specific to a set of Policies that they want to execute.

Figure 6-31: Policy Output External Reference Points

There are five types of output Policies, plus the ability to export information and knowledge that applies to policies
from ENI, that are considered in the present document. They are:

1) End-User Policies. The ENI System shall use the Euser-eni-pol External Reference Point to send Policies to
different End-Users.

2) Application Policies. The ENI System shall use the Eapp-eni-pol External Reference Point to send Policies to
applications.

3) OSS Policies. The ENI System shall use the Eoss-eni-pol External Reference Point to send Policies to the OSS.

4) BSS Policies. The ENI System shall use the Ebss-eni-pol External Reference Point to send Policies to the BSS.

5) Orchestrator Policies. The ENI System shall use the Eor-eni-pol External Reference Point to send Policies to the
Orchestrator.

Related external knowledge and information ingestion for output policies are:

• Application Knowledge. The ENI System shall use the Eapp-eni-kno External Reference Point to send knowledge
curated by an ENI System to specific applications. For example, such knowledge could describe particular
semantics that an application needs to enforce when it uses a particular set of Policies.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 135

Related internal knowledge and information for output policies are:

• Application Knowledge. The Internal Reference Point Isem-pm may be used to send policy information and
knowledge to other Functional Blocks of the ENI System that is relevant. For example, such knowledge could
include the current policy used to remedy a problem for future processing in similar situations.

6.3.9.6.3.3 Policy Management Options

There are several alternatives for building a Policy Management Architecture. This is because ENI treats different types
of policies, such as intent, imperative, declarative, and utility functions, as instances of a common Policy. That is, their
content is different, but their object type is the same. This is a powerful abstraction, and enables ENI to have different
policy types interact. This clause will consider two such options. Option 1 assumes that the operation of different types
of policies is supported using the same set of (nested) Functional Blocks. Option 2 assumes that the operation of
different types of policies is supported using a fundamentally different set of (nested) Functional Blocks.

6.3.9.6.3.4 Option 1: A Single Unified Policy Management Architecture

This option assumes that the same set of (nested) Functional Blocks are used to manage and process different types of
Policies, whether those Policies are internal or external. This may be thought of as a "templatized" architecture; the
same set of high-level Functional Blocks always exist, and may operate differently in response to processing different
policy types.

Figure 6-32 shows a simplified functional architecture of the Policy Management Functional Block. The functional
block diagram shown in Figure 6-32 does not prescribe an implementation. Rather, it describes the high-level
Functional Blocks that are needed to implement the needs of policy-based management in a given administrative
domain. Different implementations may need to add other Functional Blocks to meet their particular operational
requirements. An exemplary implementation is described in [i.1] and [i.11].

Figure 6-32: Option 1: a Templatized Policy Management Functional Architecture

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 136

Any combination of textual, graphical, and/or command-line tools may be used to author any type of Policy. The Policy
Management Functional Block (PMFB) may assist in helping the user to author and edit policies. For example, the
PMFB may identify errors, such as incorrect syntax, to the user, before and after the user submits the policy to the ENI
System. An event may be created when the user is finished authoring or editing the policy and submits it to the ENI
System.

Once a completed policy is received by the ENI System, that policy may be saved in a Policy Repository. A completed
policy shall then be either parsed or compiled. In either case, the parsing or compilation shall first check for correct
syntax and semantics. Any warnings or errors shall be sent back to the user to correct. Operation on a policy with errors
and/or warnings shall not proceed until those errors and/or warnings are fixed.

Once a policy has been successfully parsed or compiled, additional operations may be necessary before it can be
deployed, depending on the type of policy and the type of actions to be performed:

• Policy Language Translation:

- Sometimes a policy may need to be translated from one form to another form. The most common case is
when a policy is input at a high-level of abstraction and needs to be translated to a more concrete form in
order to be validated and processed. This shall be done for all intent policies that are input to the ENI
System, since by definition, an intent policy is written in a restricted natural language, such as an
external DSL.

• Policy Validation - Local Conflict Resolution:

- Local Conflict Resolution ensures that a new policy shall not conflict with any deployed policies. This
ensures that policy management is always deterministic.

- A policy is said to conflict with another policy if the actions of a policy cause the behaviour of other
policies to be changed during the same execution scope and time. For example, if a Policy Foo sets an
attribute bar to 1, and a subsequent policy sets the same attribute bar to a different value, that is a
conflict. This subject is treated more thoroughly in [8].

- The essential part of policy conflict resolution is determining the execution scope and time. For the
purposes of the present document, the execution scope is defined as the set of variables, object,
functions, and data structures that a Policy has access to at a particular time during its lifetime. Execution
time is defined as the time during which a Policy is deployed, enabled, and active.
For Imperative Policies, execution time and scope are conceptually straightforward. Given a set of
Policies P1 - Pn:

Execution scope: the time when all Policies are active and enabled, their event clauses all evaluate to
TRUE, their condition clauses all evaluation to TRUE, but two or more of their action
clauses cause conflicting actions.

Execution time: the time between the start of the first Policy to execute (e.g. P1) and the end of the last
Policy to finish execution (e.g. Pn).

- Local conflict resolution ensures that no actions in a set of policies conflict when they are executed.

• Policy Language Validation - Global Conflict Resolution:

- Global Conflict Resolution ensures that policies that execute in different Policy Domains shall not
conflict with each other.

- Policy Domains communicate with other Policy Domains through a special mechanism called a Policy
Broker. This entity facilitates communication between Policy Domains that are collaborators, consumers,
and producers:

 Two Policy Domains collaborate when the actions taken by both Policy Domains affect the same
set of entities in a non-conflicting manner.

 A Policy Domain C is a consumer of a Policy Domain P when one or more policies of Policy
Domain P are used by Policy Domain C as part of its execution. Similarly, in this example, Policy
Domain P is said to be a producer for Policy Domain C.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 137

• Policy Decision Entity:

- A Policy Decision Entity is a managed entity in a Policy Management Domain that is responsible for
deciding which, if any, policies shall be executed in response to a request by another managed entity for
a set of governance actions.

• Policy Execution Entity:

- A Policy Execution Entity is a managed entity in a Policy Management Domain that is responsible for
managing the execution of a set of Policies.

• Policy Verification Entity:

- A Policy Verification Entity is a managed entity in a Policy Management Domain that is responsible for
verifying that a Policy that was executed by a Policy Execution Entity operated as expected.

• Policy Broker:

- The Policy Broker is responsible for facilitating communication between different Policy Domains.

NOTE: This subject is for further study in Release 4 of the present document (see clause 9).

Figure 6-32 shows that each Policy Domain may provide its own closed control loop. This may start at any one of the
nested Functional Blocks (e.g. the Syntax and Semantics Validation) and return to that nest Functional Block via the
Event Bus. In addition, the combination of Policy Decision Entity, Policy Execution Entity, and Policy Verification
Entity provide feedback for any decisions made; this feedback may be logged by the Policy Domain. Once logged, this
feedback may be published to other Policy Domains to aid their decision-making.

6.3.9.6.3.5 Option 2: Differentiating between Intent and Other Types of Policies

This option assumes that a different set of (nested) Functional Blocks are used to manage and process each type of
Policy, whether those Policies are internal or external.

Figure 6-33 illustrates the important Functional Blocks that are particular to processing Intent Policies.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 138

Figure 6-33: Option 2: a Dedicated Processing of Intent Policies

Since Intent Policies are submitted by External Entities, then they are subject to validation by an ENI System. This is
particularly important in the case of Intent Policies, since the input policy text may have syntactic or semantic errors,
and also be ambiguous in nature. If the Intent Parser detects such an error, then it will stop processing and return the
error to the user.

The first important difference between processing Intent Policies and other types of Policies is that Intent Policies are
written in a restricted natural language, such as an external DSL, and then submitted to the ENI System. Hence, Intent
Policies shall need a translation mechanism to change the submitted Intent Policy into a form that the ENI System is
able to understand. This intent translation function is performed by the Intent Parser. It uses knowledge from various
Knowledge Repositories (e.g. the ENI Information and Data Models, along with knowledge that is specific to working
with Intent Policies, referred to as the Intent Knowledge) to translate the input Intent Policy to a form that can be
understood by the ENI System. The Intent Parser contains both syntactical (i.e. lexical analysis, token generation, and
syntactic analysis) and semantic (e.g. type checking, binding of objects with references, and semantic annotation to
guide further analysis) analysis.

The second important difference between processing Intent Policies and other types of Policies is that Intent Policies,
once translated, may need to be rewritten. For example, a word or phrase may be substituted to better match objects in
the information or data model. If the rewriting changes the Intent Policy in any significant way, then the Intent
Processing Functional Block should first verify with the Intent User (i.e. an End-User, Application, OSS, or BSS) that
the rewrite of the intent policy is acceptable to the Intent User. If it is not, then the processing stops for that Intent
Policy until a new Intent Policy is submitted by that Intent User. Otherwise, the Intent Policy is then checked for
conflicts with other existing Intent Policies at that particular level of abstraction. For example, multiple Intent Policies
that involve End-Users may be checked for conflicts, while Intent Policies that involve specific devices may not be
checked for conflicts at this time. If a conflict is detected, then the Intent User is notified of the problem, and processing
of this Intent Policy is stopped until the Intent User submits a new policy. Otherwise, processing continues.

The third important difference between processing Intent Policies and other types of Policies is that Intent Policies may
need to be translated to a different level of abstraction. For example, an Intent Policy that identifies a specific End-User
may need to be translated to a different form, such as a range of IP or MAC addresses, for further processing. One or
more such abstraction translations are performed, as required. Each such abstraction translation may require a repeat of
one of more of the previous steps.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 139

A necessary consequence of the above processing is that, for each abstraction translation, conflicts shall be checked for
that level of abstraction. Once all abstraction conflicts are resolved, then the final Intent Policy is compiled to a form
that can be sent to the Policy Management Execution Functional Block. This is where additional checks (e.g. conflicts
between the Intent Policy and other Policies that are not Intent-based) are performed.

6.3.9.6.4 Policy Management Federation

NOTE: This is for further study in Release 4 (see clause 9).

6.3.9.6.5 Constructing, Deploying, and Activating Policies

ENI Policies should be constructed using model-driven techniques. A model of a system is a description or specification
of that system and its environment for some certain purpose. Model-driven is a methodology for using models to direct
the understanding, design, construction, deployment, operation, maintenance and modification of software systems.

Figure 6-34 shows a functional block diagram of model-driven engineering for constructing and deploying policies
[i.38]. In this figure, the numbered steps are explained as follows:

• Step 1 annotates the information model with tag-value pairs, a UML extension to the meta-attributes of a UML
model; this is used to add information for tools to manipulate the model.

• Step 2 generates one or more DSLs that are used to describe the object model(s) created from the information
model. This enables these models to be shared across different tools and programming languages to enable a
consistent and coherent view of the information to be accessible. Multiple DSLs, along with associated parsers
and editors, may be generated from identified and tagged subsets of an information model. This enables
different object models to be defined that correspond to the disparate aspects of the managed.

• Step 3 generates a "policy DSL" to model the behaviour of the system being managed. This ensures that
behaviours defined by policies are supported in and consistent with the information model.

• Step 4 generates one or more ontologies that can be used to provide automated reasoning capabilities for the
set of produced policies. Alternatively, existing ontologies may ne matched to the needs of the above DSLs.
However, ontology matching is a complex subject, and is for further study in a future Release.

• Step 5 analyses the produced policies. This includes syntactic and semantic checking and conflict resolution.
Reasoning is used to help resolve any conflicts found. In addition, reasoning is used to transform a policy to a
different form in the Policy Continuum (see clause 6.3.9.6.2). This can also be used to transform a policy of
one type (e.g. intent) to a policy of another type.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 140

Figure 6-34: Model-Driven Engineering using Policies

Once an ENI Policy has been analyses, it may be deployed, activated, and enforced. Activation enables the policy to be
used in decision-making. Metadata contained in the policy may constrain the use of a policy (e.g. between a particular
set of start and end times). Enforcement may be done by a range of different mechanisms, from simple assertions
embedded in the policy to dynamic reasoning. Policy execution is used to control state transitions, which represent the
behaviour of the system being managed.

6.3.9.6.6 Managing Policies

Figure 6-35, [4], [i.1] and [i.3] show a simplified functional block diagram of the FOCALE architecture. This is a
cognitive and adaptive set of closed control loops (see ETSI GR ENI 017 [i.36] that uses policies to direct the
processing of adaptive control loops that are model-driven.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 141

Figure 6-35: Simplified Functional Block Diagram of the FOCALE Architecture

The Model-Based Translation (MBT) layer is similar in function to the Data Ingestion and Normalization Functional
Blocks of the ENI Architecture, except that the MBT is purely model-driven. Normalized data and events are then
analysed, and the current state of the system being managed is determined. This is then matched to the desired state. If
the two match, the upper monitoring loop is taken, since no action is needed, and the loop shall begin again where it
started. If they do not match, then the lower reconfiguration loop is taken. The reconfiguration loop may direct the
control loop to start at a new (logical) part of the system; it may also instantiate a completely new control loop.

The Policy Manager, in conjunction with the Autonomic Manager, controls the behaviour of FOCALE. Context-aware
Policies are used to capture business goals and constraints, as well as convert intent policies from various constituents to
a common normalized form. The Autonomic Manager then takes these policies, along with additional information, then
translates these directives into a form that controls the composition and function of each of the Functional Blocks
shown in Figure 6-35.

The models and ontologies are continuously updated to reflect the changing state of the system being managed and its
environment. This motivates the need for active repositories (see clause 6.3.4.5). Knowledge processing (see
clauses 6.3.4.4, 6.3.4.6 and 6.3.4.7) is thus continually performed.

Policies are thus managed throughout the execution of the control loops.

ENI Policies shall be continuously monitored and updated throughout the lifecycle of the ENI System. This should
include, but is not limited to:

• continuously monitoring the working set of policies for correct execution;

• continuously monitoring the working set of policies for possible conflicts;

• continuously look to improve the accuracy of its active knowledge repositories;

• support goal-orientated tasks (i.e. enable the system to focus on dynamic procedures, rather than static,
pre-defined tasks) to reflect the changing prioritization of user needs, business goals, and environmental
conditions.

6.3.9.6.7 Deactivating and Removing Policies

ENI Policies should be deactivated when they are no longer applicable to the current situation. One approach is to scan
the current set of states in the state machine(s) that are being used by the ENI System. As previously mentioned, a
policy is related to a state transition. Therefore, if no states exist that could be reached by the policy, then it is not
currently applicable.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 142

ENI Policies that are deactivated may still be kept in local or remote storage for later use. In general, an ENI Policy
should only be removed when it is known that it cannot be applicable to the current tasks at home, or that it is not
operating correctly. Care should be taken to ensure that the plan(s) generated by the control loops (see clause 6.3.4.7
and ETSI GR ENI 017 [i.36]) will not require the use of a policy. If that is true, then the policy in question may safely
be removed. However, it is still much simpler to deactivate a policy, as this keeps the policy, and all of the associated
work required for its instantiation, available.

6.3.10 Denormalization Functional Block

6.3.10.1 Introduction

The Data Denormalization Functional Block receives processed data from the ENI System. These data and information
are in one or more ENI internal formats. The Data Denormalization Functional Block then translates these data and
information into a form that the Assisted System (and/or its Designated Entity) may understand.

These characteristics give rise to the following requirements:

• ENI shall provide the ability to transform recommendations and commands into a form that the Assisted
System (and/or its Designated Entity) may understand.

• ENI shall use a set of models, including data types and data structures, to perform the transformation into
native format(s) used by the Assisted System (and/or its Designated Entity).

• Data Denormalization may be realized as a Functional Block that is separate from the Output Generation
Functional Block. This adheres to the Single Responsibility Principle [i.9], and enables a more scalable and
robust system to be designed and built.

6.3.10.2 Motivation

Each ENI Functional Block may use different data structures and representation of information that is specific to its
own processing. Such data structures and representation may be different in nature to the data structures and
representation used by other ENI Functional Blocks. In all cases, these data structures and representations are internal to
ENI for efficiency of internal understanding and operation. Therefore, each ENI Functional Block may use different
programming languages and protocols, which means that the same data may be represented in completely different
formats. For example, the same data about a customer may be processed using relational databases and directories. It is
important to consolidate all changes to information and data needed by the Assisted System (and/or its Designated
Entity); this ensures that conflicting commands and recommendations are not sent to the Assisted System (and/or its
Designated Entity).

In this example, recognizing that the object is a Customer, even though the data is different, may be done by comparing
the ingested data with expected data from the model. For example, the Customer object in an information model has a
set of mandatory (and optional) attributes, as well as relationships to other objects. It may also have metadata that
disambiguates this instance of a Customer from all other instances of a Customer. The Denormalization process
arranges and formats the data and information to be output so that it may be more easily and efficiently translated into a
form that is understandable by the Assisted System (and/or its Designated Entity).

6.3.10.3 Function of the Denormalization Functional Block

As stated previously, the ENI System may use one or more internal formats to represent, analyse, and process data and
information. The ENI System shall not expect the Assisted System (and/or its Designated Entity) to be able to
understand the internal format(s) of ENI. Data Denormalization translates information and data in one or more internal
formats used by the ENI System to a standardized form; this facilitates the generation of recommendations and
commands in a form that the Assisted System (and/or its Designated Entity) is able to understand.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 143

A normalized form is critical for the operation of other ENI Functional Blocks. A normalized form means that every
ENI Functional Block may be designed using knowledge about the characteristics and behaviour of pertinent data and
objects. Otherwise, each ENI Functional Block would have to accommodate data that could be represented in different
formats using different data structures. Similarly, a denormalized form is critical for the Assisted System (and/or its
Designated Entity) to be able to understand recommendations and commands given to it by ENI without having to be
modified. This lack of modification is important to facilitate early adoption of ENI. The Assisted System (and/or its
Designated Entity) need not be able to understand recommendations and commands in the internal format(s) of the ENI
System. Therefore, a denormalized form is critical for enabling the ENI System to produce outputs in a form that the
Assisted System (and/or its Designated Entity are able to understand without any additional assistance. The purpose of
the Denormalization Functional Block is to decouple the internal format(s) used by the ENI System from the native
format(s) used by the Assisted System (and/or its Designated Entity); this enables both Systems to change
independently without affecting the operation of the other.

6.3.10.4 Operation of the Denormalization Functional Block

Data and information Denormalization translate data and information from one or more internal forms to a single
standardized form. The denormalization process includes the use of pre-defined data structures, where data is converted
to a standard format that uses a standard encoding. In the case of ENI, this is facilitated using its set of models. In ENI,
models represent objects as templates; this includes defining a set of mandatory and optional attributes, operations,
relationships, and other standard features. Metadata may be used to help describe and/or prescribe this process.

In order to do this, accumulated knowledge from other ENI Functional Blocks (included predefined model information)
shall be made available to the Denormalization Functional Block, as shown in Figure 6-36. This is essentially the
inverse of the example provided in clause 6.3.3.4. The functional block diagram shown in Figure 6-36 does not
prescribe an implementation. Rather, it describes the high-level Functional Blocks that are needed to implement the
needs of Denormalization. Different implementations may need to add other Functional Blocks to meet their particular
operational requirements.

Figure 6-36: Data Denormalization Operation

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 144

Applicable data and information are not sent directly to the Denormalization Functional Block. Rather, they are first
filtered by the Knowledge Management Functional Block, which also supplies modelled data and information to aid the
Denormalization Functional Block in denormalizing the data and information that it receives. After the denormalization
process is complete, it sends its result to the Output Generation Functional Block.

6.3.11 Output Generation Functional Block

6.3.11.1 Introduction

This clause describes the processes associated with generating recommendations and commands that are specific to the
format(s) of a particular Assisted System (and/or its Designated Entity). Recommendations and commands are received
from the Data Denormalization Functional Block. The Output Generation Functional Block then translates the data into
a specific format (or set of formats) required by the Assisted System (and/or its Designated Entity). This is essentially
the inverse of the example provided in clause 6.3.2.4.

These characteristics give rise to the following requirements:

• ENI shall provide the ability to output recommendations and commands in one or more formats specified by
the Assisted System (and/or its Designated Entity). This may be efficiently implemented using a multi-agent
architecture.

• ENI shall provide the ability to output recommendations and commands on-demand as well as in batch, push,
or other agreed upon communication modes.

• Output Generation may be realized as a Functional Block that is separate from the Data Denormalization
Functional Block. This adheres to the Single Responsibility Principle [i.9], and enables a more scalable and
robust system to be designed and built.

6.3.11.2 Motivation

The motivation for this Functional Block is similar to that of the Denormalization Functional Block (see
clause 6.3.10.2). It is important that the Assisted System (and/or its Designated Entity) are decoupled from the ENI
System; this enables each to change independent of the other. In addition, it is important that the Assisted System
(and/or its Designated Entity) need not have to change in order to benefit from interacting with the ENI System. Hence,
the function of the Output Generation Functional Block is to translate recommendations and commands from the ENI
System to the form(s) specified by the Assisted System (and/or its Designated Entity).

6.3.11.3 Function of the Output Generation Functional Block

As stated previously, the ENI System may use one or more internal formats to represent, analyse, and process data and
information. The ENI System shall not expect the Assisted System (and/or its Designated Entity) to be able to
understand the internal format(s) of ENI. Data Denormalization translates information and data in one or more internal
formats used by the ENI System to a standardized form; this facilitates the generation of recommendations and
commands in a form that the Assisted System (and/or its Designated Entity) is able to understand.

6.3.11.4 Operation of the Output Generation Functional Block

6.3.11.4.1 Introduction

Figure 6-37 shows one possible functional block diagram of an agent-based system for generating outputs. The
functional block diagram shown in Figure 6-37 does not prescribe an implementation. Rather, it describes the high-level
Functional Blocks that are needed to implement the needs of output generation. Different implementations may need to
add other Functional Blocks to meet their particular operational requirements.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 145

Figure 6-37: Output Generation Operation

The Output Generation Functional Block of the ENI System communicates with the Assisted System (and/or its
Designated Entity). This communication may use an API Broker to translate between the APIs of the ENI System and
the APIs of the Assisted System (and/or its Designated Entity). The Output Generation Functional Block is shown as an
agent-based architecture. This architecture hides the native interfaces of both Assisted System (and/or its Designated
Entity) as well as each managed entity of the Assisted System that is being managed by the ENI System.

In recommendation mode, communication from the Output Generation Functional Block shall go to the Assisted
System (and/or its Designated Entity); it shall not be sent to managed entities of the Assisted System.

In management mode, communication from the Output Generation Functional Block shall go to the Assisted System
(and/or its Designated Entity); it may also be sent to managed entities of the Assisted System, with the approval of the
Assisted System (and/or its Designated Entity).

The model-based translation shown in the Agent is separate from the MDE Functional Block. The purpose of the
agent's model-based translation is to use modelled information to ensure that the recommendations and commands are
in a format that can be understood by the Assisted System (and/or its Designated Entity).

The advantages of this type of architecture include:

• Flexibility: the implementation may change (e.g. agent functionality may change) without affecting the API
(built from more abstract levels) of either the ENI System or the Assisted System.

• Extensibility: new agents may be added or removed to suit the needs of the application.

• Manageability: instead of having to manage individual agents, the management focus is abstracted to
managing roles.

6.3.11.4.2 Treating Output Generation as the Inverse of Normalization

NOTE: This is for further study in Release 4 (see clause 9).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 146

6.4 API Broker

6.4.1 Introduction

The API Broker shall be implemented as a trusted entity. Only trusted entities can see, let alone interact with, the API
Broker. The API Broker shall be a mandatory component, which implies that the API Broker shall be compliant with all
ENI External Reference Points.

The API Broker has four main functions:

1) serve as an API gateway (i.e. an entity that can translate between different APIs);

2) provide programmable tools that enable the developer to design and realize APIs for the ENI API Broker;

3) provide the developer with the ability to change the mode of operation of the ENI API Broker
(i.e. development, runtime, and test modes);

4) provide API management.

Management of APIs shall include, but not be limited to, the following functions: authentication, authorization,
accounting, auditing, and related functionality.

The design of the API Broker should facilitate external analysis, including but not limited to sending API statistics to an
analytics module (e.g. to understand API performance) as well as to an ANN (e.g. to use different algorithms to assess
if the API Broker is being attacked; examples include malicious URL detection and other types of intrusion detection).

6.4.2 Motivation

The motivation for using an API Broker is threefold:

• The use of an API Broker enables the continuing development of the ENI System architecture to proceed
independently of any specific requirements of interacting with external entities.

• The use of an API Broker provides a more scalable and extensible solution, as it facilitates the use of generic
(e.g. RESTful) technologies as well as custom plug-ins to meet the needs of communication with different
external entities.

• The use of an API Broker enables advanced solutions, such as API composition, to be used.

In addition, it is important that the Assisted System (and/or its Designated Entity) need not have to change in order to
benefit from interacting with the ENI System. An API Broker provides the best solution, based on accepted industry
practice, for enabling communication with external entities independent of their structure and function.

6.4.3 Function of the API Broker

The function of the API Broker is to interact with external entities using APIs. More specifically, the API Broker shall:

• accept incoming APIs transmitted through an ENI External Reference Point and route them to the appropriate
ENI Functional Block(s);

• accept outgoing ENI APIs transmitted through an ENI External Reference Point and route them to the
appropriate external entity;

• convert protocols used by external entities to protocols used by the ENI System, and vice-versa;

• manage different versions of the same API.

NOTE: An API Broker can also be used for API composition. This item is for further study in Release 4 (see
clause 9).

APIs that are received from external entities by the API Broker may include metadata that aids the API Broker in
properly routing the API.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 147

ENI APIs that are sent to external entities by the API Broker should include metadata that aids the API Broker in
properly routing the API.

The API Broker shall use the following External Reference Points to send ENI APIs to, and receive APIs from, an
external entity:

• Eeni-api-in defines APIs and associated information and/or metadata sent from an external entity to the ENI
System.

• Eeni-api-out defines ENI APIs and associated information and/or metadata sent from the ENI System to an
external entity.

• Eeni-api-dev defines ENI APIs and associated information and/or metadata for a developer to create and manage
the Functional Blocks that make up the ENI API Broker.

• Eeni-api-run defines ENI APIs and associated information and/or metadata sent from the ENI System to an
external entity.

• Eeni-api-dmg contains generic operational, administrative, management, and performance data and associated
information and/or metadata used by developers to manage the ENI Broker.

• Eeni-api-emg contains generic operational, administrative, management, and performance data and associated
information and/or metadata used by an external entity to manage the ENI Broker. Such information and data
may be a subset of the information and data contained in the Eeni-api-dmg Reference Point.

The API Broker shall interact with all 22 ENI External Reference Points to transmit received APIs to, and send ENI
APIs from, ENI Functional Blocks. See clause 7.3 for a description of each of the External Reference Points.

See clause 7.5 for a description of the six APIs used in the API Broker.

6.4.4 Operation of the API Broker

The purpose of the ENI API Broker is to function as a common intermediary between external entities and an ENI
System that communicate using APIs. This is shown in Figure 6-38.

Figure 6-38: Function of the ENI API Broker

The API Broker consists of two distinct parts, the API Gateway and the Broker Mediation Layer. This is an application
of the Façade pattern [i.5]. The Façade pattern creates an object that serves as a front-facing interface masking more
complex interfaces and protocols that are used by other parts of the system. This pattern thus creates a consistent view
from the perspective of the API consumer. An API Facade provides future compatibility, since it insulates clients from
any changes to the functionality of the underlying system that the client is accessing. From the API consumer
perspective, nothing will have changed.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 148

The API Gateway is the entry point for external entities to request API-based services of an ENI System (and similarly,
the exit point for an ENI System to request ENI API-based services of an external system). As such, the API Gateway is
responsible for enabling each client (including an ENI System) to see and use only those services that they need. The
API Gateway may provide a generic or a tailored API to a client to route requests, transform protocols, and implement
shared logic like validation, authentication and rate-limiting. Tailored responses are supplied by plug-ins; this enables
different responses for the same task to suit client-specific needs.

The Broker Mediation Layer is responsible for integrating client API requests with the underlying system
(e.g. integrating API requests from the Assisted System to an ENI System, or vice-versa). It transforms API requests
into formats acceptable for different systems (e.g. XML, JSON, YANG), delivers the request, and then processes and
transforms the response of the underlying system into response and data formats the API has promised to return to the
API consumers. This layer can perform tasks ranging from simple data manipulations, such as converting a response
from XML to JSON, to much more complex operations where an application-specific client is required to run in order
to connect to existing systems.

6.5 Communication Between Functional Blocks

6.5.1 Introduction

ENI uses a set of patterns to communicate between its own internal Functional Blocks as well as with external systems.
These patterns are documented in the following clauses.

Enterprise integration is the task of making separate applications work together to produce a unified set of functionality.
Some applications may be custom developed in-house while others are bought from third-party vendors. The
applications probably run on multiple computers, which may represent multiple platforms, and may be geographically
dispersed. Some of the applications may be run outside of the enterprise by business partners or customers. Some
applications may need to be integrated even though they were not designed for integration and cannot be changed.
These issues and others like them are what make application integration difficult. This clause will explore the options
available for application integration.

6.5.2 Common Communication Requirements

Communication patterns used within ENI shall meet the following criteria:

• An ENI System shall use a messaging system for communication and interaction with other ENI Functional
Blocks.

• An ENI System should use a Semantic Bus to implement its messaging system.

• Each ENI Functional Block shall be loosely coupled, so that each ENI Functional Block can evolve
independently of other ENI Functional Blocks.

• Each ENI Functional Block should use the Semantic Bus for communication and interaction with other ENI
Functional Blocks.

• ENI External and Internal Functional Blocks should exchange data in a timely manner.

• ENI External and Internal Functional Blocks should enable asynchronous processing.

• Each ENI Internal Functional Block shall use a common data format.

• Each ENI Internal Functional Block shall avoid duplicating the functionality and behaviour of another ENI
Internal Functional Block.

The components of a loosely coupled systems are independent, enabling changes in one module to be performed
without affecting other modules. For example, the code in one component should not be reused by other components.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 149

Timeliness of exchanging data is important and should be minimized. Otherwise, the data and information used in
making a decision may become irrelevant. All data exchange between Internal Functional Blocks should use either a
messaging bus or another mechanism to populate information and data as quickly as possible, such as a shared database.
This enables the appropriate ENI Internal Functional Blocks to decide if the data and information is useful in their own
contexts. Similarly, different ENI Functional Blocks should be able to complete their tasks asynchronously, unless there
are constraints that demand synchronous task completion.

The ENI Internal Functional Blocks shall use normalized input data and information to avoid complex transformation
processing. For input data and information coming from external sources, the normalized data is created by the Data
Normalization Functional Block and sent using the Inorm-sem Internal Reference Point (see clause 7.7.2); otherwise, such
data and information is exchanged using an appropriate Internal Reference Point that connects the Internal Functional
Block to the Semantic Bus (see clauses 7.7.3 through 7.7.8). For output data and information, if the output data is to be
sent to an external source, then the Internal Reference Point Isem-denorm (see clause 7.7.9) is used to send the normalized
data to the Denormalization Functional Block, where it will be converted to an appropriate form for external
consumption); otherwise, the data is exchanged using an appropriate Internal Reference Point that connects the Internal
Functional Block to the Semantic Bus (see clauses 7.7.3 through 7.7.8).

6.5.3 Recommended Communication Patterns to be Used Within ENI

6.5.3.1 Introduction

Communication between ENI Functional Blocks should use appropriate ENI Reference Points and the Semantic Bus
whenever possible. Communication patterns follow standard enterprise messaging exchange patterns (e.g. [i.34]).
A messaging exchange pattern is a software design pattern that describes how two different parts of a messaging system
connect and communicate with each other. For example, the Request-Reply design pattern enables a sender to request
information (via a message) and ensures that the receiver replies to that message. As another example, the Pipes and
Filters design pattern connects a set of functions (the filters) to a stream of data (using pipes).

6.5.3.2 Remote Procedure Calls and Remote Method Invocations

Remote Procedure Call (RPC) and Remote Method Invocation (RMI) are two mechanisms that allow the user to invoke
or call processes that will run on a different component from the one that is currently being used. The main difference is
that RPC is an imperative approach that calls specific functions, while RMI uses a reference to a method of an object
that is being invoked.

Both approaches isolate the sender from the receiver. However, both approaches have two disadvantages. First, both
impose a potentially brittle point-to-point communication mechanism between the sender and the receiver. Second, such
mechanisms tend to be vendor-specific and not interoperable. As such, this type of mechanism need not be used as a
general mechanism.

Therefore, these and similar mechanisms should only be used for exclusive (i.e. point-to-point) communication between
two components with well-defined interfaces whose semantics are known to and understood by each component.

6.5.3.3 Batch File Exchange

Files are an efficient means of transferring data. It provides physical decoupling between different system components,
and may be stored for later use. However, files themselves are rarely efficient, especially if only changes in previous
data are of interest. More importantly, if data formats change, then data integrity problems are caused.

Therefore, batch file exchange should be restricted to content whose data format do not change, and the content should
be highly cohesive (i.e. all content should be related to each other). For example, a data model update could use this
approach. However, if there are only small updates, then other approaches, such as federated learning, are both more
secure and more efficient.

6.5.3.4 Shared Database

The motivation for using a shared database is to eliminate unnecessary data duplication and replication. It takes
advantage of inherent tools of a database to notify clients of content changes. Databases can be distributed and scaled
both horizontally and vertically. The key deficiency is that this system exchanges data, as opposed to responding to
changes in goals to be obtained.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 150

6.5.3.5 Messaging

6.5.3.5.1 Introduction

In general, the preferred communication mechanism for communication between ENI Functional Blocks should be to
use a messaging system. This is because such systems provide asynchronous and reliable data transfer without requiring
knowledge of specific publishers and subscribers. A messaging system allows loosely coupled communication to serve
as an intermediate layer between producers and consumers. The ENI Semantic Bus (see clause 6.3.4.4.4) is similar in
functionality to the Semantic Service Bus described in [i.30], but has additional functionality. This enables the ENI
Semantic Bus to use an event-driven architecture for registering, discovering, persisting, processing, and routing
messages. A message may contain data, information, metadata, and/or policies.

The ENI Semantic Bus shall provide an automatic semantic transformation of services, via event-driven messages,
which guarantees interoperability between heterogeneous Functional Blocks. This provides loose coupling of the
Functional Blocks of ENI, ensuring that the evolution of each ENI Functional Block is independent of all other ENI
Functional Blocks.

6.5.3.5.2 Common Requirements of Messaging Systems

All types of messaging systems used by ENI shall support the following semantics.

Publishers: Publishers need not know the identity of a subscriber. Publishers need not know which
subscribers are subscribed to which messages.

Subscribers: Subscribers need not know the identity of a publisher. Subscribers need not know which
publishers created which messages.

Time Decoupling: Publishers and subscribers need not be active at the same time.

Asynchronicity: Subscribers shall be able to retrieve a message any time after it has been published (subject
to persistence characteristics).

Guaranteed Delivery: Each message sent by a publisher shall be guaranteed to be delivered to all subscribers.

No Duplicates: Each message sent by a publisher shall be guaranteed to be delivered to all subscribers.

Content Subscription: An ENI messaging system shall support content-based subscription.

Topic Subscription: An ENI messaging system shall support topic-based subscription.

Semantic Subscription: An ENI messaging system should support semantic-based subscription.

Storage Persistence: Each message should be stored persistently.

NOTE 1: An ENI Messaging System may provide a configurable choice for which types of messages are stored
persistently.

Logging: An ENI messaging system should support the logging of messages.

NOTE 2: This feature facilitates auditing, guaranteed delivery, and message replay.

Request-Reply: An ENI Messaging System may support the request-reply pattern [i.34].

Message Ordering: An ENI Messaging System may support message ordering (i.e. messages arrive at a
subscriber in the same order as sent by the producer).

The above requirements describe three types of subscriptions. A content-based subscription instructs the messaging
system to deliver messages if the attributes and/or content of those messages matches constraints defined by the
subscriber. Similarly, a topic-based subscription assigns a message to one or more topics by the publisher; the
subscriber then will receive all messages for the topics that they subscribe to.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 151

A semantic-based subscription [i.30] matches messages based on the meaning of the message (in addition to content
and topic). The meaning could be simplistically approximated using metadata, but should be defined using either
ontologies or linguistics. In contrast to classical subscription mechanisms, a semantic-based subscription does not
require publishers to explicitly declare the topic a message belongs to. Instead, the subscriber defines the structure
and/or meaning of the message types in which it is interested. This may be done by using a declarative policy, by using
a formal logical expression, or by other similar means. This is another reason why it is important to have a single policy
information model that enables different policies to be represented, so that interoperability between different types of
policies (e.g. imperative, declarative, and intent) is achievable. See clause 6.3.9 for more information.

6.5.3.5.3 Messaging Functionality

Figure 6-39 shows a functional block diagram of a messaging system suitable for ENI, such as the ENI Semantic Bus.

NOTE: Each of the blocks shown in Figure 6-39 is part of a larger set of patterns. This is for further study in the
next release of the present document.

Figure 6-39: Functional Block Diagram of an ENI Messaging System

A Message Endpoint is the connection from an ENI Functional Block to the ENI Semantic Bus. It may be a simple
component, a gateway, or have more complex functionality, as explained in [i.30].

A message is a special type of datatype that is sent through a message channel. The message has attributes that can be
read by the messaging system to put it in the correct message channel, as well as an optional payload. The attributes and
metadata of the message and payload are read, normalized, and then used to help select the appropriate message
channel. For example, simple semantic differences, such as the name of an attribute (e.g. "employeeID" vs. "fteID" vs.
"ID_employee", are detected and normalized to the consensual name expected in the data model. When such changes
are made, metadata is appended to the message specifying the nature of the change and a timestamp of when the change
was made.

A message channel is a construct that messages are written into and subsequently removed from; the removed message
is then sent to a set of destinations. There are different channel types, such as a publish-subscribe channel and a point-
to-point channel.

A message transformer changes the data format and/or content to conform with a desired output data model. This is
similar to the Adaptor pattern of [i.5]; it enables two incompatible interfaces to interoperate by converting the interface
of an object to the interface expected by the client using that object.

6.5.4 Recommended Communication Patterns to be Used Between ENI
and External Systems

NOTE: This is for further study in Release 4 (see clause 9).

6.6 Security Considerations
NOTE: This is for further study in Release 4 (see clause 9).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 152

7 Reference Points

7.1 Introduction
This clause uses the definitions of Reference Points from clause 4.4.6 to define the set of Reference Points used by ENI
for communication between its different components as well as between it and the Assisted System.

ENI only standardizes communications that occur over a Reference Point. This enables ENI External and Internal
Reference Points to differentiate between data, control, management, and other specific types of communication
information. This differentiation is denoted by suffixes for each Reference Point, as follows:

-dat: denotes a data (input-only) interface

-cmd: denotes a management (output-only) interface that sends recommendations and/or commands

-pol: denotes a management bi-directional interface that sends or receives ENI policies

NOTE 1: Policy APIs and interfaces use a separate policy reference point that is separate from other management
concepts (e.g. modelled and contextual data). This enables external Systems to more easily communicate
policies with ENI.

-ctx: denotes a data only bi-directional interface that sends context- and situation-aware data

NOTE 2: In a distributed ENI system, context and situational data may need to be exchanged between different ENI
systems and Functional Blocks.

-oth: denotes a data only bi-directional interface that is used to send and receive other types of
application-specific data that is not part of any of these other categories

-kno: denotes a data only bi-directional interface that sends model and other semantic data

EXAMPLE: In a distributed ENI system, this interface is used to send model updates between ENI system
Functional Blocks; another example is creating knowledge from data and information as described
in clause 6.3.4.4.3 of the present document.

-api: denotes separate APIs that send or receive information and data between external systems and the
ENI API Broker

7.2 External Reference Point Overview
Figure 7-1 shows an overview of the External Reference Points that provide internally facing External Reference Points
(i.e. External Reference Points that communicate data and information from external entities to ENI). Figure 7-1 shows
ENI Reference Points for a single domain only.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 153

Figure 7-1: Overview of the ENI Internal Facing External Reference Points

Figure 7-2 shows an overview of the External Reference Points that provide externally facing External Reference Points
(i.e. External Reference Points that communicate data and information from ENI to external entities.

Figure 7-2: Overview of the ENI External Facing External Reference Points

Figure 7-2 shows ENI Reference Points for a single domain only.

NOTE: Currently, it is assumed that all applications are trusted. Work on non-trusted applications will start in a
future Release.

Table 7-1a provides brief descriptions of the External Reference Points of an ENI System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 154

Table 7-1a: ENI External Reference Point Overview (not Including ENI API Broker)

Name Brief Definition Interface Functions

Eoss-eni-dat
Defines data and information sent from the OSS-like functionality to the
ENI System; these data and information may be acknowledged by the
ENI System.

Any data from the OSS-like
functionality that the ENI System
can use.

Eoss-eni-cmd
Defines recommendations and/or commands sent from ENI to the
OSS-like functionality; these recommendations and commands shall
be acknowledged by the Assisted System.

The type of data sent by the ENI
System depends on the mode
that it is operating in.

Eoss-eni-pol

Defines Policies and associated information and/or metadata
exchanged between the OSS-like Functionality and the ENI System
that control behaviour (including services and resources) for the
Assisted System. Policies and information received by the ENI System
shall be acknowledged by the ENI System. Similarly, Policies and
information received by the Application shall be acknowledged by the
Application.

These may be defined by the
operator or the OSS-like
Functionality. Inputs may be in a
controlled language or DSL for
Intent.

Eapp-eni-ctx

Defines situation- and/or context-aware data and information
exchanged between applications and the ENI System. Data and
information received by the ENI System may be acknowledged by the
ENI System. Similarly, data and information received by the
Application may be acknowledged by the Application.

Contains input information for the
ENI System to determine context
and output context result data
from the ENI System for
Applications.

Eapp-eni-oth

Defines generic application data exchanged between Applications and
the ENI System, which is neither situation- or context-aware data and
also is not model or knowledge information. Data and information
received by the ENI System may be acknowledged by the ENI System.
Similarly, data and information received by the Application may be
acknowledged by the Application.

Contains generic application data
that may be useful to the ENI
System, and generic data from
the ENI System that may be
useful to applications.

Eapp-eni-kmo

Defines model and/or knowledge information and acknowledgements
exchanged between Applications and the ENI System. Data and
information received by the ENI System may be acknowledged by the
ENI System. Similarly, data and information received by the
Application may be acknowledged by the Application.

Limited to just DIKW and model
information. Requires additional
security.

Eapp-eni-pol

Defines Policies and associated information and/or metadata
exchanged between the BSS-like functionality and the ENI System that
control behaviour (including services and resources) for the Assisted
System. Policies and information received by the ENI System shall be
acknowledged by the ENI System. Similarly, Policies and information
received by the Application shall be acknowledged by the Application.

These are defined by the
application. Inputs may be in a
controlled language or DSL for
Intent.

Ebss-eni-dat
Defines data and information sent by the BSS-like functionality to the
ENI System; these data and information may be acknowledged by the
ENI System.

Any data from the BSS-like
functionality that the ENI System
can use.

Ebss-eni-cmd
Defines data and acknowledgements sent from the ENI System to the
BSS-like functionality; recommendations and commands sent from the
ENI System shall be acknowledged by the BSS-like functionality.

The type of data sent by the ENI
System depends on the mode
that it is operating in.

Ebss-eni-pol

Defines Policies and associated information and/or metadata
exchanged between the BSS-like functionality and the ENI System that
control behaviour (including services and resources) for the Assisted
System. Policies and information received by the ENI System shall be
acknowledged by the ENI System. Similarly, Policies and information
received by the Application shall be acknowledged by the Application.

These may be defined by the
operator or the BSS-like
functionality. Inputs may be in a
controlled language or DSL for
Intent.

Eusr-eni-pol

Defines Policies and associated information and/or metadata
exchanged between Applications and the ENI System that control
behaviour (including services and resources) for a user (or an agent
acting on behalf of the user). Policies and information received by the
ENI System shall be acknowledged by the ENI System. Similarly,
Policies and information received by the Application shall be
acknowledged by the Application.

These may be defined by the user
or the operator. Inputs may be in
a controlled language for Intent.

Eor-eni-dat
Defines data and acknowledgements sent from the Orchestrator to the
ENI System; data sent from the Orchestrator may be acknowledged by
the ENI System.

Any data from the Orchestrator
that the ENI System can use

Eor-eni-cmd
Defines commands and acknowledgements sent from the ENI System
to the Orchestrator; recommendations and commands sent from the
ENI System shall be acknowledged by the Orchestrator.

The type of data sent by the ENI
System depends on the mode
that it is operating in.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 155

Name Brief Definition Interface Functions

Eor-eni-pol

Defines Policies and associated information and/or metadata
exchanged between the Orchestrator and the ENI System that control
behaviour (including services and resources) for the Assisted System.
Policies and information received by the ENI System shall be
acknowledged by the ENI System. Similarly, Policies and information
received by the Application shall be acknowledged by the Application.

These may be defined by the
operator or the OSSOrchestrator.
Inputs may be in a controlled
language or DSL for Intent.

Einf-eni-dat
Defines data and acknowledgements sent from the infrastructure to the
ENI System; data sent to the ENI System may be acknowledged by
the ENI System.

Any data from the Orchestrator
that the ENI System can use (e.g.
log files, telemetry, alarms).

Einf-eni-cmd
Defines recommendations and/or commands sent from the ENI
System to the infrastructure; recommendations and commands sent
from the ENI System shall be acknowledged by the Assisted System.

The type of data sent by the ENI
System depends on the mode
that it is operating in.

Figure 7-3 shows the six External Reference Points dedicated to ENI API Broker interaction.

Figure 7-3: Overview of the ENI External Reference Points for the ENI API Broker

Table 7-1b provides brief descriptions of the External Reference Points of an ENI System. Refer to clause 7.5.1,
Figure 7-4, for a picture of the ENI API Broker External Reference Points.

Table 7-1b: ENI External Reference Point Overview (just the ENI API Broker)

Name Brief Definition Interface Functions

Eeni-api-in

Define recommendations and/or commands and associated
information and/or metadata sent by an external entity to the ENI
System. Data and information received by the ENI Broker may be
acknowledged by the ENI Broker. Similarly, data and information
received by an external entity may be acknowledged by that external
entity.

Sends input recommendations and
commands from an external entity
to the ENI API Broker.

Eeni-api-out

Defines ENI APIs and associated information and/or metadata sent
by the ENI System to an external entity. Data and information
received by the ENI Broker may be acknowledged by the ENI Broker.
Similarly, data and information received by an external entity may be
acknowledged by that external entity.

Sends output recommendations
and commands from the ENI API
Broker to an external entity.

Eeni-api-dev

Defines ENI APIs and associated information and/or metadata for a
developer to create and manage the Functional Blocks that make up
the ENI API Broker. Data and information received by the ENI Broker
may be acknowledged by the ENI Broker.

Management of an ENI API Broker
by a developer.

Eeni-api-run

Control the operation of the ENI API Broker. This includes putting the
ENI API Broker into different operational states, selectively enable
and disable different functionality, and for catching exceptions and
other runtime errors produced by the ENI API Broker during its
operation. All operational and control messages generated by the ENI
API Broker should be sent to the ENI System. The ENI System
should acknowledge all such operational and control messages.

Control the operation of the ENI API
Broker.

Eeni-api-dmg

Defines generic operational, administrative, management, and
performance data and associated information and/or metadata
exchanged between developers and the ENI API Broker. Data and
information received by the ENI API Broker may be acknowledged by
the ENI API Broker.

Contains generic operational,
administrative, management, and
performance data and associated
information and/or metadata used
by developers to manage the ENI
Broker.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 156

Name Brief Definition Interface Functions

Eeni-api-emg

Defines generic operational, administrative, management, and
performance data and associated information and/or metadata
exchanged between developers and the ENI API Broker. Data and
information received by the ENI API Broker may be acknowledged by
the ENI API Broker. Such information and data may be a subset of
the information and data contained in the Eeni-api-dmg Reference Point.

Contains generic operational,
administrative, management, and
performance data and associated
information and/or metadata used
by an external entity to manage the
ENI Broker.

7.3 External Reference Point Definitions

7.3.1 Reference Point Eoss-eni-dat

This External Reference Point is used by the OSS-like Functionality of the Assisted System to provide data and
information for the ENI System to ingest and process. This can include data, information, and metadata. Policies, and
policy-related information, shall not be sent over this External Reference Point. The ENI System shall acknowledge the
receipt of data and information that it has requested, and may acknowledge the receipt of unsolicited data. This is a uni-
directional External Reference Point, meaning that data for processing shall only flow from the OSS-like Functionality
to the ENI System.

The ENI System shall ingest the data and normalize it. If it is not possible to normalize the data, the ENI System shall
report this to the OSS-like functionality of the Assisted System and ask for further information that defines the format,
as well as expected characteristics and behaviour, of these data. Upon receipt of this information, the ENI System shall
record this in its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.2 Reference Point Eoss-eni-cmd

This External Reference Point is used by the ENI System to send recommendations and/or commands, as well as
acknowledgements, to the OSS-like functionality. Policies, and policy-related information, shall not be sent over this
External Reference Point. Recommendations and commands sent from the ENI System shall be acknowledged by the
OSS-like functionality. The ENI System may include metadata to describe how the recommendations and/or commands
are to be used by the OSS-like Functionality. This is a uni-directional External Reference Point, meaning that
commands and recommendations for processing shall only flow from the ENI System to the OSS-like Functionality.

If any recommendations or commands are ambiguous or are not understood by the OSS-like Functionality, then the
OSS-like Functionality shall report this to the ENI System and ask for further information that defines the meaning and
usage of the recommendation and/or command. A negotiation of data and information contained in the recommendation
or command may need to occur to arrive at a final viable communication alternative. In this case, the ENI System shall
record this in its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.3 Reference Point Eoss-eni-pol

This External Reference Point is used to define Policies and associated information and/or metadata sent by the
OSS-like Functionality to the ENI System and/or Policies sent by the ENI System to the OSS-like Functionality. Both
the OSS-like Functionality and the ENI System may send any type of Policy that is mutually agreeable. This includes
acknowledgements by the receiving entity in both cases. Both the OSS-like Functionality as well as the ENI System
may include metadata to describe how the recommendations and/or commands are to be used by the OSS-like
Functionality or the ENI System. This is a bi-directional External Reference Point, meaning that Policies may be sent to
the ENI System by the OSS-like Functionality and/or Policies may be sent from the ENI System to the OSS-like
Functionality.

The associated information includes policyRefPoint, which is used to indicate the specific External Reference Point
(i.e. Eoss-eni-pol), so that the acknowledgement could be sent back using the appropriate External Reference Point. This is
described in [i.33].

The metadata includes policyType, which is used to indicate the specific type of the policy (i.e. imperative policy,
declarative policy and intent policy as defined in clause 6.3.9.3.2), so that the ENI system could perform appropriate
actions as specified in clause 6.3.9.6.3. This is also described in [i.33].

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 157

If any Policy Rule (including any attached metadata) is ambiguous or is not understood by the entity receiving the
Policy Rule, then the receiving entity shall report this to the entity sending the Policy Rule and ask for further
information that defines the meaning and usage of the Policy Rule. A negotiation of data and information contained in
the recommendation or command may need to occur to arrive at a final viable communication alternative. In this case,
the ENI System shall record this in its knowledge base and correct the format and content of future recommendations
and commands sent to this entity to facilitate future communications.

7.3.4 Reference Point Eapp-eni-ctx

This External Reference Point is used to define situation- and/or context-aware data and information and
acknowledgements exchanged between applications and the ENI System. Policies, and policy-related information, shall
not be sent over this External Reference Point. The ENI System shall acknowledge the receipt of data and information
that it has requested, and may acknowledge the receipt of unsolicited data. Similarly, the Application shall acknowledge
the receipt of data and information that it has requested, and may acknowledge the receipt of unsolicited data. This is a
bi-directional External Reference Point, meaning that context and situation data and information may flow from the ENI
System to the Application or vice-versa.

Input context and situation aware data received by the ENI System shall be ingested and normalized. If it is not possible
to normalize the data, the ENI System shall report this to the Application and ask for further information that defines the
format, as well as expected characteristics and behaviour, of these data. Upon receipt of this information, the ENI
System shall record this in its knowledge base and correct the format and content of future recommendations and
commands sent to this entity.

The ENI System may include metadata to describe how the recommendations and/or commands are to be used by the
Application. If any recommendations or commands are ambiguous or are not understood by the Application, then the
Application shall report this to the ENI System and ask for further information that defines the meaning and usage of
the recommendation and/or command. A negotiation of data and information contained in the recommendation or
command may need to occur to arrive at a final viable communication alternative. In this case, the ENI System shall
record this in its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.5 Reference Point Eapp-eni-oth

This External Reference Point is used to define generic application data and acknowledgements exchanged between
applications and the ENI System that is neither situation- or context-aware data and also is not model or knowledge
information. Policies, and policy-related information, shall not be sent over this External Reference Point. The ENI
System shall acknowledge the receipt of data and information that it has requested, and may acknowledge the receipt of
unsolicited data. Similarly, the Application shall acknowledge the receipt of data and information that it has requested,
and may acknowledge the receipt of unsolicited data. This is a bi-directional External Reference Point, meaning that
other types of data and information may flow from the ENI System to the Application or vice-versa.

Input application data received by the ENI System shall be ingested and normalized. If it is not possible to normalize
the data, the ENI System shall report this to the Application and ask for further information that defines the format, as
well as expected characteristics and behaviour, of these data. Upon receipt of this information, the ENI System shall
record this in its knowledge base and correct the format and content of future recommendations and commands sent to
this entity.

The ENI System may include metadata to describe how the recommendations and/or commands are to be used by the
Application. If any recommendations or commands are ambiguous or are not understood by the Application, then the
Application shall report this to the ENI System and ask for further information that defines the meaning and usage of
the recommendation and/or command. A negotiation of data and information contained in the recommendation or
command may need to occur to arrive at a final viable communication alternative. In this case, the ENI System shall
record this in its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 158

7.3.6 Reference Point Eapp-eni-kno

This External Reference Point defines model and/or knowledge information and acknowledgements exchanged between
applications and the ENI System. Policies, and policy-related information, shall not be sent over this External Reference
Point. The ENI System shall acknowledge the receipt of data and information that it has requested, and may
acknowledge the receipt of unsolicited data. Similarly, the Application shall acknowledge the receipt of data and
information that it has requested, and may acknowledge the receipt of unsolicited data. This is a bi-directional External
Reference Point, meaning that knowledge and model information may flow from the ENI System to the Application or
vice-versa. This Reference Point shall contain extra security measures to protect the sensitive nature of these types of
data and information.

NOTE: The data and information transmitted over this Reference Point require a special protocol to exchange
their content. That protocol will be defined in Release 3 of the present document (see clause 9).

Input application data received by the ENI System shall be ingested and normalized. If it is not possible to normalize
the data, the ENI System shall report this to the Application and ask for further information that defines the format, as
well as expected characteristics and behaviour, of these data. Upon receipt of this information, the ENI System shall
record this in its knowledge base and correct the format and content of future recommendations and commands sent to
this entity.

The ENI System may include metadata to describe how the recommendations and/or commands are to be used by the
Application. If any recommendations or commands are ambiguous or are not understood by the Application, then the
Application shall report this to the ENI System and ask for further information that defines the meaning and usage of
the recommendation and/or command. A negotiation of data and information contained in the recommendation or
command may need to occur to arrive at a final viable communication alternative. In this case, the ENI System shall
record this in its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.7 Reference Point Eapp-eni-pol

This External Reference Point is used to define Policies and associated information and/or metadata sent by
Applications to the ENI System and/or Policies sent by the ENI System to Applications. Both Applications and the ENI
System may send any type of Policy that is mutually agreeable. This includes acknowledgements by the receiving entity
in both cases. Both Applications as well as the ENI System may include metadata to describe how the recommendations
and/or commands are to be used by Applications or the ENI System. This is a bi-directional External Reference Point,
meaning that Policies may be sent to the ENI System by the Application and/or Policies may be sent from the ENI
System to the Application.

The associated information includes policyRefPoint, which is used to indicate the specific External Reference Point
(i.e. Eapp-eni-pol), so that the acknowledgement could be sent back using the appropriate External Reference Point. This is
described in [i.33].

The metadata includes policyType, which is used to indicate the specific type of the policy (i.e. imperative policy,
declarative policy and intent policy as defined in clause 6.3.9.3.2), so that the ENI system could perform appropriate
actions as specified in clause 6.3.9.6.3. This is described in [i.33].

If any Policy Rule (including any attached metadata) is ambiguous or is not understood by the entity receiving the
Policy Rule, then the receiving entity shall report this to the entity sending the Policy Rule and ask for further
information that defines the meaning and usage of the Policy Rule. A negotiation of data and information contained in
the recommendation or command may need to occur to arrive at a final viable communication alternative. In this case,
the ENI System shall record this in its knowledge base and correct the format and content of future recommendations
and commands sent to this entity to facilitate future communications.

7.3.8 Reference Point Ebss-eni-dat

This External Reference Point is used by the BSS-like functionality to send data to the ENI System. Policies, and
policy-related information, shall not be sent over this External Reference Point. The ENI System shall acknowledge the
receipt of data and information that it has requested, and may acknowledge the receipt of unsolicited data. This is a
uni-directional External Reference Point, meaning that data for processing shall only flow from the BSS-like
functionality to the ENI System.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 159

Input application data received by the ENI System shall be ingested and normalized. If it is not possible to normalize
the data, then the ENI System shall report this to the BSS-like functionality and ask for further information that defines
the format, as well as expected characteristics and behaviour, of these data. Upon receipt of this information, the ENI
System shall record this in its knowledge base and correct the format and content of future recommendations and
commands sent to this entity to facilitate future communications.

7.3.9 Reference Point Ebss-eni-cmd

This External Reference Point is used by Defines data and acknowledgements exchanged between the BSS-like
functionality and the ENI System. Policies, and policy-related information, shall not be sent over this External
Reference Point. Recommendations and commands sent from the ENI System shall be acknowledged by the BSS-like
functionality. The ENI System may include metadata to describe how the recommendations and/or commands are to be
used by the BSS-like functionality. This is a uni-directional External Reference Point, meaning that commands and
recommendations for processing shall only flow from the ENI System to the BSS-like functionality.

If any recommendations or commands are ambiguous or are not understood by the BSS-like functionality, then the
BSS-like functionality shall report this to the ENI System and ask for further information that defines the meaning and
usage of the recommendation and/or command. A negotiation of data and information contained in the recommendation
or command may need to occur to arrive at a final viable communication alternative. In this case, the ENI System shall
record this in its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.10 Reference Point Ebss-eni-pol

This External Reference Point is used to define Policies and associated information and/or metadata sent by the BSS-
like functionality to the ENI System and/or Policies sent by the ENI System to the BSS-like functionality. Both the
BSS-like functionality and the ENI System may send any type of Policy that is mutually agreeable. This includes
acknowledgements by the receiving entity in both cases. Both the BSS-like functionality as well as the ENI System may
include metadata to describe how the recommendations and/or commands are to be used by the BSS-like functionality
or the ENI System. This is a bi-directional External Reference Point, meaning that Policies may be sent to the ENI
System by the BSS-like functionality and/or Policies may be sent from the ENI System to the BSS-like functionality.

The associated information includes policyRefPoint, which is used to indicate the specific External Reference Point (i.e.
Ebss-eni-pol), so that the acknowledgement could be sent back using the appropriate External Reference Point. This is
described in [i.33].

The metadata includes policyType, which is used to indicate the specific type of the policy (i.e. imperative policy,
declarative policy and intent policy as defined in clause 6.3.9.3.2), so that the ENI system could perform appropriate
actions as specified in clause 6.3.9.6.3. This is described in [i.33].

If any Policy Rule (including any attached metadata) is ambiguous or is not understood by the entity receiving the
Policy Rule, then the receiving entity shall report this to the entity sending the Policy Rule and ask for further
information that defines the meaning and usage of the Policy Rule. A negotiation of data and information contained in
the recommendation or command may need to occur to arrive at a final viable communication alternative. In this case,
the ENI System shall record this in its knowledge base and correct the format and content of future recommendations
and commands sent to this entity to facilitate future communications.

7.3.11 Reference Point Eusr-eni-pol

This External Reference Point is used to define Policies and associated information and/or metadata exchanged between
external entities and the ENI System that control behaviour (including services and resources) for a user (or an agent
acting on behalf of the user). The ENI System shall acknowledge the receipt of data and information that it has
requested, and may acknowledge the receipt of unsolicited data. Similarly, the external entity shall acknowledge the
receipt of data and information that it has requested, and may acknowledge the receipt of unsolicited data. This is a
bi-directional External Reference Point, meaning that data and Policies may flow from the ENI System to the external
entity or vice-versa.

The associated information includes policyRefPoint, which is used to indicate the specific External Reference Point
(i.e. Eusr-eni-pol), so that the acknowledgement could be sent back using the appropriate External Reference Point. This is
described in [i.33].

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 160

The metadata includes policyType, which is used to indicate the specific type of the policy (i.e. imperative policy,
declarative policy and intent policy as defined in clause 6.3.9.3.2), so that the ENI system could perform appropriate
actions as specified in clause 6.3.9.6.3. This is described in [i.33].

Input Policies received by the ENI System shall be ingested and parsed. If the parsing produces any errors or warnings,
the ENI System shall report this to the entity that sent the Policy. The ENI System may record the types of errors and/or
warnings detected and later analyse them to determine if the grammar can be made clearer. The ENI System shall not
continue work on the input Policy that did not parse completely until it has been fixed by the external authoring entity.

The ENI System may include metadata to describe how Policies are to be used by the external entity. If any Policies
generated by the ENI System are not understood unambiguously by the external entity, then the external entity shall
report this to the ENI System and ask for further information that defines the meaning and usage of the Policy. A
negotiation of data and information contained in the Policy may need to occur to arrive at a final viable alternative. In
this case, the ENI System shall record this in its knowledge base and correct the format and content of future Policies
sent to this entity to facilitate future communications.

7.3.12 Reference Point Eor-eni-dat

This External Reference Point is used to define data and information sent from the Orchestrator to ENI. Policies, and
policy-related information, shall not be sent over this External Reference Point. ENI shall acknowledge the receipt of
data and information that it has requested, and may acknowledge the receipt of unsolicited data. This is a uni-directional
External Reference Point, meaning that data for processing shall only flow from the Orchestrator to ENI.

Input application data received by the ENI System shall be ingested and normalized. If it is not possible to normalize
the data, the ENI System shall report this to the Orchestrator and ask for further information that defines the format, as
well as expected characteristics and behaviour, of these data. Upon receipt of this information, the ENI System shall
record this in its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.13 Reference Point Eor-eni-cmd

This External Reference Point is used to define recommendations and commands sent from the ENI System to the
Orchestrator. Policies, and policy-related information, shall not be sent over this External Reference Point.
Recommendations and commands sent from the ENI System shall be acknowledged by the Orchestrator. The ENI
System may include metadata to describe how the recommendations and/or commands are to be used by the
Orchestrator. This is a uni-directional External Reference Point, meaning that commands and recommendations shall
only flow from the ENI System to the Orchestrator.

The ENI System may include metadata to describe how policies are to be used by the external entity. If any
recommendations or commands are ambiguous or are not understood by the Orchestrator, then the Orchestrator shall
report this to the ENI System and ask for further information that defines the meaning and usage of the recommendation
and/or command. A negotiation of data and information contained in the recommendation or command may need to
occur to arrive at a final viable communication alternative. In this case, the ENI System shall record this in its
knowledge base and correct the format and content of future recommendations and commands sent to this entity.

7.3.14 Reference Point Eor-eni-pol

This External Reference Point is used to define Policies and associated information and/or metadata sent by the
Orchestrator to the ENI System and/or Policies sent by the ENI System to the Orchestrator. Both the Orchestrator and
the ENI System may send any type of Policy that is mutually agreeable. This includes acknowledgements by the
receiving entity in both cases. Both the Orchestrator as well as the ENI System may include metadata to describe how
the recommendations and/or commands are to be used by the Orchestrator or the ENI System. This is a bi-directional
External Reference Point, meaning that data and Policies may flow from the ENI System to the Orchestrator or
vice-versa.

The associated information includes policyRefPoint, which is used to indicate the specific External Reference Point
(i.e. Eor-eni-pol), so that the acknowledgement could be sent back using the appropriate External Reference Point. This is
described in [i.33].

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 161

The metadata includes policyType, which is used to indicate the specific type of the policy (i.e. imperative policy,
declarative policy and intent policy as defined in clause 6.3.9.3.2), so that the ENI system could perform appropriate
actions as specified in clause 6.3.9.6.3. This is described in [i.33].

If any Policy Rule (including any attached metadata) is ambiguous or is not understood by the entity receiving the
Policy Rule, then the receiving entity shall report this to entity sending the Policy Rule and ask for further information
that defines the meaning and usage of the Policy Rule. A negotiation of data and information contained in the
recommendation or command may need to occur to arrive at a final viable communication alternative. In this case, the
ENI System shall record this in its knowledge base and correct the format and content of future recommendations and
commands sent to this entity.

7.3.15 Reference Point Einf-eni-dat

This External Reference Point is used to define data and acknowledgements exchanged between the infrastructure and
the ENI System. This is a uni-directional External Reference Point, meaning that data shall only flow from the
Infrastructure to the ENI System.

Input application data received by the ENI System shall be ingested and normalized. The ENI System shall
acknowledge the receipt of data and information that it has requested, and may acknowledge the receipt of unsolicited
data. If it is not possible to normalize the data, the ENI System shall report this to the infrastructure or the Assisted
System and ask for further information that defines the format, as well as expected characteristics and behaviour, of
these data. Upon receipt of this information, the ENI System shall record this in its knowledge base to facilitate future
communication.

7.3.16 Reference Point Einf-eni-cmd

This External Reference Point is used to define recommendations and/or commands sent by the ENI System to the
infrastructure. Recommendations and commands sent from the ENI System shall be acknowledged by the infrastructure
or an agent acting on behalf of the infrastructure. The ENI System may include metadata to describe how the
recommendations and/or commands, which may be in the form of policies, are to be used by the external entity. This is
a uni-directional External Reference Point, meaning that recommendations and/or commands shall only flow from the
ENI System to the Infrastructure.

If any recommendations or commands are ambiguous or are not understood unambiguously by the infrastructure, then
the infrastructure shall report this to the ENI System and ask for further information that defines the meaning and usage
of the recommendation and/or command. A negotiation of data and information contained in the recommendation or
command may need to occur to arrive at a final viable communication alternative. In this case, the ENI System shall
record this in its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communication.

7.3.17 Reference Point Eeni-api-in

This External Reference Point is used to define recommendations and/or commands sent by an external entity to the
ENI System. The external entity may include metadata to describe or prescribe additional information as necessary.
This is a uni-directional External Reference Point, meaning that APIs shall only flow from an external entity to the API
Broker over this interface.

If any APIs are ambiguous or are not understood unambiguously by the API Broker, then the API Broker shall report
this to the external entity and ask for further information that defines the meaning and usage of the API from the
sending external entity. The API Broker shall notify the ENI System that this API request was unclear. A negotiation of
data and information contained in the API may need to occur to arrive at a final viable communication alternative. In
this case, the API Broker shall conduct the negotiation. Once the negotiation is completed, the API Broker shall send
the results of the negotiation to the ENI System, so that this negotiation may be recorded in its knowledge base to
facilitate future communication.

7.3.18 Reference Point Eeni-api-out

This External Reference Point is used to define ENI APIs sent by the ENI System to an external entity. The ENI System
should include metadata to describe how the ENI API is to be used by the external entity. This is a uni-directional
External Reference Point, meaning that ENI APIs shall only flow from the ENI System to the external entity.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 162

If any ENI APIs are ambiguous or are not understood unambiguously by the external entity, then the external entity
shall report this to the API Broker and ask for further information that defines the meaning and usage of the
recommendation and/or command. The API Broker shall notify the ENI System that this API request was unclear.
A negotiation of data and information contained in the recommendation or command may need to occur to arrive at a
final viable communication alternative. In this case, the API Broker shall conduct the negotiation. Once the negotiation
is completed, the API Broker shall send the results of the negotiation to the ENI System, so that this negotiation may be
recorded in its knowledge base to facilitate future communication.

7.3.19 Reference Point Eeni-api-dev

This External Reference Point is used to define ENI APIs for a developer to create and manage the Functional Blocks
that make up the ENI API Broker. Core API Management functions shall include API creating, updating, deleting,
documenting, and versioning APIs. It should also include supporting the importing and exporting of API description
languages (e.g. RAML, WADL, WSDL, and Swagger) to enable API definitions to be exchanged between the ENI
System and external systems and developers that use different languages, platforms, and programming environments.
System API Management functions shall include API discovery, API consumer onboarding, configuration management,
version management, monitoring, and auditing.

If any APIs are ambiguous or are not understood unambiguously by the API Broker, then the API Broker shall report
this to the developer and ask for further information that defines the meaning and usage of the API from the developer.
The API Broker shall notify the ENI System that this API request was unclear. A negotiation of data and information
contained in the API may need to occur to arrive at a final viable communication alternative. In this case, the API
Broker shall conduct the negotiation. Once the negotiation is completed, the API Broker shall send the results of the
negotiation to the ENI System, so that this negotiation may be recorded in its knowledge base to facilitate future
communication.

7.3.20 Reference Point Eeni-api-run

This External Reference Point is used to control the operation of the ENI API Broker. This includes putting the ENI
API Broker into development, testing, and operational states. It also includes the ability to selectively enable and
disable different functionality via External Reference Points. Finally, it is also responsible for catching exceptions and
other runtime errors produced by the ENI API Broker during its operation for mitigation by an appropriate role-based
entity (e.g. a developer, an administrator, or an operator).

If any APIs are ambiguous or are not understood unambiguously by the API Broker, then the API Broker shall report
this to the developer and ask for further information that defines the meaning and usage of the API from the developer.
The API Broker shall notify the ENI System that this API request was unclear. A negotiation of data and information
contained in the API may need to occur to arrive at a final viable communication alternative. In this case, the API
Broker shall conduct the negotiation. Once the negotiation is completed, the API Broker shall send the results of the
negotiation to the ENI System, so that this negotiation may be recorded in its knowledge base to facilitate future
communication.

7.3.21 Reference Point Eeni-api-dmg

This External Reference Point is used by the developer to monitor the performance and functionality of the ENI API
Broker. This includes functionality to analyse the performance of the ENI API Broker in terms of how many APIs have
been correctly and incorrectly executed as well as problems in translating from external information to an ENI internal
format and vice-versa.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 163

If any APIs are ambiguous or are not understood unambiguously by the API Broker, then the API Broker shall report
this to the developer and ask for further information that defines the meaning and usage of the API from the developer.
The API Broker shall notify the ENI System that this API request was unclear. A negotiation of data and information
contained in the API may need to occur to arrive at a final viable communication alternative. In this case, the API
Broker shall conduct the negotiation. Once the negotiation is completed, the API Broker shall send the results of the
negotiation to the ENI System, so that this negotiation may be recorded in its knowledge base to facilitate future
communication.

7.3.22 Reference Point Eeni-api-emg

This External Reference Point enables an external entity to perform all or some of the functionality provided by the Eeni-

api-dmg. Some of the functionality that is internal to an ENI System and critical for its operation may not be accessible by
some external entities.

If any APIs are ambiguous or are not understood unambiguously by the API Broker, then the API Broker shall report
this to the external entity and ask for further information that defines the meaning and usage of the API from the
external entity. The API Broker shall notify the ENI System that this API request was unclear. A negotiation of data and
information contained in the API may need to occur to arrive at a final viable communication alternative. In this case,
the API Broker shall conduct the negotiation. Once the negotiation is completed, the API Broker shall send the results
of the negotiation to the ENI System, so that this negotiation may be recorded in its knowledge base to facilitate future
communication.

7.4 External Reference Points Protocol Specification

7.4.1 Introduction

Table 7-3 in clause 7.5.2.7 summarizes the advantages and disadvantages of four popular protocols: REST, HATEOAS,
GraphQL, and gRPC. This results in the following requirements:

• An ENI System should use gRPC and HTTP/2.An ENI System may use GraphQL and HTTP/1.1 for specific
use cases.

• An ENI System may use REST and HTTP/1.1 for specific use cases.

• An ENI System may use HATEOAS and HTTP/1.1 for specific use cases.

7.4.2 Generic Protocols for use with External Reference Points

gRPC enables a remote client or server to communicate with another server by simply calling the receiving server's
function as if it were local. This makes communicating and transferring large data sets between client and server much
easier in distributed systems. Like other RPC systems, gRPC defines a service. It specifies its methods and return types
using protobuf to enable the easy definition of services and auto-generation of client libraries. gRPC uses this protocol,
currently on version 3, as its interface definition language and serialization toolset.

The gRPC protocol supports various authentication mechanisms, making it easy to adapt to new and existing systems.
For example, authentication in gRPC client-server communications can be implemented using recommended
mechanisms like TLS (one-way) or mTLS [10], [11] (mutual TLS, for authentication between a client and a server)
with or without GoogleTM token-based authentication. Custom authentication is also supported by extending the built-in
authentication function in gRPC [i.51].

By default, gRPC comes bundled with the following authentication mechanisms:

• SSL and TLS to authenticate the server and encrypt the data exchanged between the client and the server.

• Generic token-based authentication mechanism to attach metadata-based credentials to requests and responses.

• Google-specific mechanisms (not covered in the present document).

An ENI System should use TLS or mTLS for authentication and encryption. An ENI System may use token-based
authentication mechanism.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 164

OAuth2 [i.52] should be used if token-based authentication is used.

7.4.3 Specific Protocols for use with External Reference Points

7.4.3.1 gRPC and HTTP/2

gRPC shall use HTTP/2. gRPC requires HTTP/2, which multiplexes calls over a single TCP connection.

Securing gRPC shall use HTTP/2 over TLS with the Application-Layer Protocol Negotiation (ALPN) extension to
TLS [10], [11], to negotiate whether both the client and the server support HTTP/2. The TLS Handshake Protocol
enables the server and client to authenticate each other and to negotiate an encryption algorithm and cryptographic keys
before the application protocol transmits or receives its first byte of data. During this protocol, the server will send a
signed TLS certificate, which the client validates with its CA. (A CA is a trusted party that issues digital certificates.)
This X.509v3 certificate format is used, as described in [15], [16] and [17].

gRPC [i.51] shall use the Galois/counter mode of AES. AES is a symmetric-key block cipher algorithm that provides
data authenticity (integrity) and confidentiality. A block is a fixed length of bits, and the Galois/counter mode of
operation defines how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger
than a block.

7.4.3.2 GraphQL and HTTP/1.1

GraphQL should use HTTP/1.1. However, GraphQL is transport-layer agnostic, so it could use other protocols.

GraphQL may use other transport-layer protocols, such as WebSockets.

GraphQL's conceptual model is an entity graph. Hence, entities in GraphQL are not identified by URLs. Instead, a
GraphQL server operates on a single URL/endpoint, usually /graphql, and all GraphQL requests for a given service
should be directed at this endpoint.

7.4.3.3 HATEOAS and HTTP/1.1

GraphQL should use HTTP/1.1.

HTTP/1.1 should use a reliable transport layer protocol. The most common example is TCP.

7.4.3.4 REST and HTTP/1.1

REST should use HTTP/1.1.

HTTP/1.1 should use a reliable transport layer protocol. The most common example is TCP.

7.5 ENI API Overview

7.5.1 Introduction

A Software Architecture represents the design decisions related to the structure and behaviour of a software system.
From the perspective of ENI, a software architecture is the decomposition of a software system into a set of software
modules, each of which obeys the principles outlined in "Functional Concepts for Modular System Operation" [i.35].

The ENI API Architecture is a type of software architecture that focusses on developing software interfaces that expose
ENI data and information for use by external applications. The ENI API Architecture is a set of communication
protocols, code, and tools that enable an ENI System to interact with either a human or an external software system.
A high-level functional diagram of the ENI API Architecture is shown in Figure 7-4.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 165

Figure 7-4: High-Level ENI API Architecture Functional Diagram

Figure 7-4 defines 7 types of APIs:

• ENI Developer APIs: These APIs are exclusively for the use of the development of the ENI API Broker.

• ENI Runtime APIs: These APIs are exclusively for the use of the ENI API Broker, and enable information to
be communicated from the Assisted System to the ENI API Broker and hence to the ENI System and
vice-versa.

• ENI API Analytics Services: These APIs are used to transfer data between external entities and the ENI
System for use in analytics.

• ENI API Management Services: These APIs are used to send recommendations or commands, including
policies, between external entities and the ENI System. Recommendation and commands are uni-directional,
APIs, while policies are bi-directional APIs.

• ENI API Semantic Services: These APIs are used to transfer semantic information between external entities
and the ENI System. These are bi-directional APIs.

NOTE 1: Semantic services, such as models and inferencing explanations, are separated from management services
in order to differentiate between a management decision and other information that can be used to make a
management decision.

• ENI API Situation Services: These APIs are used to transfer context- and situation-aware information, as
well as application-specific data, between external entities and the ENI System. These are bi-directional APIs.

• ENI API Security Services: These APIs are used to perform security functions between external entities and
the ENI System. These APIs are for further study.

Figure 7-5 provides a more detailed view of how these seven sets of APIs are organized among the ENI API Broker and
the ENI System. In this figure, the ENI API Analytics Services are input output only (i.e. from the ENI System to the
API Broker and hence to the Assisted System). All other ENI API Services are bi-directional.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 166

Figure 7-5: ENI API Broker Interaction

The purpose of the Functional Blocks shown in Figure 7-5 are summarized as follows.

• The ENI System is an innovative, policy-based, model-driven functional architecture that improves operator
experience. The ENI System assists decision-making of humans as well as machines, to enable a more
maintainable and reliable system that provides context-aware services that more efficiently meet the needs of
the business. It is defined in clause 6.3 of the present document.

• The ENI API Broker decouples the ENI System from other external systems that it communicates with. This
enables the development of the ENI System and external systems to proceed independently. The ENI API
Broker shall be used to translate between the ENI APIs and APIs of the Assisted System and its Designated
Entity. More specifically, the ENI API Broker shall ingest APIs through an appropriate ENI External
Reference Point, analyse the ingested API, and then route the functionality of the ingested API to an
appropriate ENI Functional Block (this is typically the Data Ingestion Functional Block, but may be a different
Functional Block if the API is known to an ENI System). Two new API-specific Functional Blocks are
introduced into the ENI API Broker:

- The ENI API Development Functional Block. This Functional Block shall be responsible for the ENI
API design and development. It can be thought of as a toolbox that contains reusable and modular
building blocks to compose ENI APIs. Two External Reference Points are defined. The first, Eeni-api-dev, is
used by a developer to create and manage the Functional Blocks that make up the ENI API Broker. Core
API Management functions shall include API creating, updating, deleting, documenting, and versioning
APIs. It should also include supporting the importing and exporting of API description languages (e.g.
RAML, WADL, WSDL, and Swagger) to enable API definitions to be exchanged between the ENI
System and external systems and developers that use different languages, platforms, and programming
environments. System API Management functions shall include API discovery, API consumer
onboarding, configuration management, version management, monitoring, and auditing. The second, Eeni-

api-run, is used to control the operation of the ENI API Broker. This includes putting the ENI API Broker
into development, testing, and operational states. It is also responsible for catching exceptions and other
runtime errors produced by the ENI API Broker during its operation for mitigation by an appropriate
role-based entity.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 167

- The ENI API Runtime Functional Block. This Functional Block shall be responsible for executing
APIs. It enables the APIs to accept incoming requests from external consumers of the ENI APIs and
provide appropriate responses. Formally, API Brokering translates external information and commands
to a format suitable for ENI ingestion, and similarly, translates ENI internal information and commands
to a format suitable for external ingestion. Two External Reference Points are defined. Eeni-api-in is used to
define recommendations and/or commands sent by an external entity to the ENI System. Eeni-api-out is used
to define ENI APIs sent by the ENI System to an external entity. API Service Level Agreements (i.e.
contractual definitions defining the performance requirements of the ENI API Broker) may optionally be
included in this Functional Block.

• The performance of the ENI API Broker has two External Reference Points. Eeni-api-dmg is used by the developer
to monitor the performance and functionality of the ENI API Broker. Similarly, some or all of these functions
may be done by an external entity using Eeni-api-emg.

There are five different types of data services provided by ENI:

• ENI API Analytics Services shall consist of a set of data and information sent from the ENI System to an
external entity for analysing the performance of an ENI System as well as to further enhance the conclusions
of an ENI System. This includes information that was ingested by an ENI System as well as recommendations
and commands that were produced by an ENI System (e.g. the data input via the -dat External Reference
Points as well as the recommendations and commands sent via the -cmd External Reference Points).

• ENI API Management Services shall consist of the recommendations and commands produced by an ENI
System (e.g. the recommendations and commands sent via the -cmd External Reference Points and/or the
policies sent via the -pol External Reference Points). It may also include insights as to the ENI API Broker
performance (e,.g., from Eeni-api-emg).

• ENI Semantic Services shall consist of data, model, and related information produced by an ENI system
(e.g. information sent via the -kno External Reference Point).

• ENI Situation Services shall consist of data and related information produced by an ENI system
(e.g. information sent via the -ctx and -oth External Reference Point).

• ENI API Security Services is for further study.

NOTE 2: Additional functionality, such as API lifecycle management and an ENI API Developer portal, depend on
the type of API architectural style chosen and other factors, and will be addressed in a future version of
the present document.

7.5.2 API Architectural Styles

7.5.2.1 Introduction

One of the primary purposes of an API is to exchange information and data. For the purposes of ENI, "information" is
represented by Information, Knowledge, and Wisdom; coupled with Data, this represents the DIKW hierarchy referred
to in clause 6.3.4.4.3 and defined in "Functional Concepts for Modular System Operation" (ETSI GR ENI 016 [i.35])
for background information and a more thorough discussion of the DIKW hierarchy.

The most generic form of data exchange is to transform data from a form structured according to a source schema to a
form structured in a target schema, so that the target data is an accurate representation of the source data. Since this
involves a transformation, there are three cases to consider:

1) There is a single way to transform a datum from its original (source schema) to its intended (target schema)
representation.

2) There may be no way to transform a datum from its original (source schema) to its intended (target schema)
representation.

3) There may be many different ways to transform a datum from its original (source schema) to its intended
(target schema) representation.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 168

The current state-of-the-art is to define an architecture that uses APIs for data exchange. More specifically, it has clients
interacting with an API layer representing the application on the server-side. The benefit of this API-based approach to
application architecture design is that it enables a wide variety of physical client devices and application types to
interact with the given application. For example, the same API can be used for PC-based, cellphone, and IoT
computing. Communication may occur between humans and/or applications.

7.5.2.2 Challenges in API Architectures

Applications are designed using a variety of languages and protocols. This causes a proliferation of file types and
encodings. Two exemplary file types are text (e.g. HTML, XML, TEXT, SQL) and binary (e.g. FOC, XLS, PDF, MP3).
File formats are protocols which programs agree to use to represent information. A file format is responsible for
ensuring the data is structured properly and correctly represented. For example, a JPG file is an image that has a
predefined internal format that allows different programs (Browsers, Spreadsheets, Word Processors) to use the file as
an image. This is also true of text files (e.g. the format of HTML enables a Browser to render a web page in a specific
way). Another example is a json file, which defines its structure as a set of nested key-value pairs.

An encoding transforms data into a format required for a number of information processing needs Generically, this
transforms data into a set of symbols. The reverse process is called decoding. A simple example is adding metadata,
such as a checksum, into a transmission that can be used to verify data's correctness. Another example is to increase
interoperability, json files should be encoded in UTF-8.

Consequently, there are variations in APIs that depend on file format and encoding.

Different API architectures may be used to implement data exchange between entities. Most API architectures are
intended to exchange data. ENI shall be able to exchange both data as well as information, knowledge, and wisdom.
These latter three categories may include inferences, models, and other information.

ENI has defined specific APIs to differentiate between exchanging data and these other types of information. This is
shown in Figure 7-4 and Figure 7-5, and described in clause 7.5.1.

The following four clauses will describe four popular API architectures: REST, HATEOAS, GraphQL, and gRPC.
Clause 7.5.2.6 will compare them and provide recommendations for use in ENI.

7.5.2.3 REST API Style

REST (Representational State Transfer) is an architectural style for services, and it defines a set of architectural
constraints and agreements for building web-based APIs. The constraints are [i.45]:

1) Client-server. Clients and servers are distinct, and may be implemented and deployed independently, using any
language or technology, so long as they conform to the Web's uniform interface.

2) Uniform interface. This is defined as four separate rules:

i) Identification of resources. Each distinct Web-based concept is known as a resource and may be
addressed by a unique identifier.

ii) Clients manipulate representations of resources. The same exact resource can be represented to different
clients in different ways.

iii) Self-descriptive messages. A resource's desired state can be represented within a client's request
message. A resource's current state may be represented within the response message that comes back
from a server.

iv) Links. A resource's state representation includes links to related resources.

3) Layered system. This enables network-based intermediaries such as proxies and gateways to be transparently
deployed between a client and server using the Web's uniform interface.

4) Cache. A web server can declare the cacheability of each response's data.

5) Stateless. A web server is not required to keep track of the state of its client applications. As a result, each
client shall include all of the contextual information that it considers relevant in each interaction with the web
server.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 169

6) Code-on-demand. This enables web servers to temporarily transfer executable programs, such as scripts or
plug-ins, to clients.

NOTE: Code-on-demand defines a technology coupling between web servers and their clients, since the client
needs to be able to understand and execute the code that it downloads on-demand from the server. Hence,
this constraint should be considered optional.

REST is a stateless, cacheable, and simple architecture that is not a protocol but a pattern. REST is designed to make
optimal use of an HTTP-based infrastructure. The fundamental concept behind the REST style is using resources. A
resource is a data structure, which can be serialized to various concrete representations (e.g. a JSON or an XML
representation). REST APIs expose and manipulate these resources.

REST Resources are similar to objects, except that in REST, methods are restricted to the set of HTTP methods
(sometimes they are also called HTTP verbs). This set of allowed methods provides a standard set of methods that can
be used to manipulate the resource. No other methods can be stated in API requests, neither in the HTTP body nor in
the base path nor in the parameters. The five major methods are:

Table 7-2: REST Methods

REST VERB Description Success Code(s) Failure Code(s)
GET Fetches a set of resources 200 404
POST Creates a new set of resources 200 n/a
PUT Updates or replaces the given set of resources 200, 204 404
PATCH Modifies the given resource 200, 204 404
DELETE Deletes the given resource 200 404

The status codes are the same status codes used by HTTP.

RESTful APIs may also use HTTP methods. For example, the OPTIONS method enables a client to discover how it can
interact with a resource (i.e. which specific REST methods can be used, which version of HTTP the server supports, and
what type of content the API is returning. As another example, the HEAD method returns information about the
resource itself (e.g. has it been changed, and metadata about the resource).

The REST architectural style ensures that APIs use HTTP correctly by imposing the following constraints:

• APIs are designed to use resources, not methods. Hence, APIs use nouns, not verbs.

• A uniform interface, defined by a subset of HTTP methods and capabilities, is used. This ensures that the
semantics of using HTTP are adhered to.

• Stateless communication occurs between client and server.

• Requests should be independent and loosely coupled.

The REST architectural style provides a number of important benefits. First, the implementation can scale easily by
adding additional servers. This also provides improved fault tolerance, availability, and reliability. Caching is provided
by the HTTP infrastructure. The REST API style is designed to be simple, and does not require much overhead. Finally,
REST can support multiple content types (e.g. a REST API may be able to deliver the resource in multiple, alternative
formats, enabling different clients that have different capabilities to use the same API). HTTP provides content type
negotiation mechanisms, which define how clients can exchange information about their capabilities and negotiate the
appropriate content type.

7.5.2.4 HATEOAS API Style

The HATEOAS (Hypermedia as the Engine of Application State) API architecture style constrains a REST API
architecture style to enable APIs to be self-descriptive. In HATEOAS, the term "hypermedia" refers to any content that
contains links to other forms of media, such as images, movies, and text. The semantics of the resources is provided by
media types. That is, all actions that can be performed on a resource are described in the representation of the resource
in the form of annotated links. The annotated links can be navigated by a generic client, which can interpret and follow
links. Since all resources are linked, the client only needs to have access to the root resource; the client can then follow
the links to reach any other resource. This enables a dynamic architecture to be defined, since it effectively decouples
the client from the server. All meta-information is obtained before the API request. Hence, if the API is changed, all
resources that link to the changed resource are updated with new links and new associated meta-information.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 170

A REST request only provides the data and not any actions around it. A HATEOAS request enables the server to send
the data and any related actions. For example, with HATEOAS, a request for a calendar entry may also return URIs to
any actions associated with that calendar entry. This simplifies understanding and is a step towards making APIs self-
documenting.

The single most important reason for HATEOAS is loose coupling (see ETSI GR ENI 016 [i.35], clause 4.1.8). If a
consumer of a REST service needs to hard-code all the resource URLs or URIs, then it is tightly coupled with its
service implementation. Instead, if URLs or URIs are returned, then there is no tight dependency on the URI structure,
as it is specified and used from the response, and it is loosely coupled.

The HATEOAS API architecture style can be modeled as a state machine. Resources correspond to states, and the links
between the resources correspond to the transitions of the state machine. This provides a number of important
advantages. First, the HATEOAS API architecture style is inherently flexible, since new versions, or changed media
types, can be handled by the server without breaking any clients. Second, since the client and server are decoupled, the
API and its clients do not need to evolve together. Most importantly, the client does not need any a-priori knowledge of
the API.

7.5.2.5 GraphQL API Style

GraphQL is an open-source data query language for APIs and a runtime for fulfilling those queries. GraphQL is
intended to develop APIs used on the web. GraphQL was originally developed by Facebook for internal use before
being publicly released in 2015. The GraphQL project was subsequently moved from Facebook to the GraphQL
Foundation, hosted by the Linux Foundation.

Despite its name, GraphQl is not a graph database. GraphQL defines a a type system, query language and execution
semantics, static validation, and type introspection. It supports reading, writing, and subscribing to changes to data.
GraphQL is not tied to any specific language. Instead, it enables the developer to define the structure of the data
required. This means that query results have the same composition as the query. GraphQL formalized this by defining
its own Schema Definition Language.

Simplistically, a GraphQL query reports on fields in an object. In contrast to REST APIs, GraphQL APIs are structured
in terms of types and fields, not endpoints. This means that GraphQL may use a single endpoint to describe a system.
Furthermore, every GraphQL field and object may have a set of arguments; this means that GraphQL may enable
multiple API calls to be made. This is in contrast to a REST-based approach, which is limited to only providing a single
set of arguments (i.e. the query parameters and URL segments in a request).

GraphQL's type system defines a set of rules that assign variables, functions, and other parts of a program to a datatype,
which governs the behaviour of that program component. A type system enables interfaces between different parts of a
computer program to have predictable and consistent semantics (e.g. an integer always behaves as an integer).

GraphQL does have some notable limitations. First, GraphQL is just a simple query language. It does not have the
power of a robust query language, such as SQL. For example, it does not support transitive closure (e.g. given a query
that returns the parents of an object, it cannot return the set of all parents of that object in a single query). A side effect
of this (and other limitations) is that queries that return too many results, or are recursive in nature, need to be avoided.

Second, since GraphQL allows each query to be different (e.g. with different parameters), caching results for GraphQL
is more complicated than other approaches. GraphQL does not offer built-in, standardized caching. Similarly, limiting
the number of queries in a GraphQL system is also very difficult. This is mitigated to some extent by some GraphQL
implementations.

Third, GraphQL queries always return a HTTP status code of 200, regardless of whether or not that query was
successful. If your query was unsuccessful, the response will have a top-level errors key with associated error messages
and stacktrace. This can make it much more difficult to do error handling and can lead to additional complexity for
things like monitoring.

7.5.2.6 gRPC API Style

The gRPC (Remote Procedure Call) is an open-source data exchange technology developed by Google using the
HTTP2 protocol. HTTP is not presented to the API developer or server, so there is no need to explicitly map RPC
concepts to HTTP. It uses the Protocol Buffers binary format (Protobuf) for data exchange. This means that Protobuf
may be used as both its Interface Definition Language (IDL) and as its underlying message interchange format. Also,
this architectural style enforces rules that a developer shall follow to develop or consume web APIs.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 171

While REST is a set of guidelines for designing web APIs, it does not enforce anything. In contrast, gRPC enforces
rules by defining a .proto file that shall be adhered to by both client and server for data exchange.

gRPC is a Resource-Orientated Architectural (ROA) style. Distributed architectures are made up of components that are
consumed across a network through well-defined interfaces. In ROA, these components are referred to as resources.
A resource is a self-contained, identifiable entity having a state that can be assigned a uniform resource locator (URI).
While a service represents the execution of a requested action, a resource represents a distributed component that is
manageable through a consistent, standardized interface.

ROA extends the REST architectural style and offers a broader, extensible, flexible, and transport-independent
architecture. ROAs have four main features:

1) Uniform Interface. A uniform and consistent set of well-defined methods that manipulate the resources in an
application. In particular, standard methods are preferred over custom methods. (see clause 8.3).

2) Addressability. An application is addressable if it publishes the salient aspects of its data set as service
endpoints. ROA resources are exposed using URIs.

3) Statelessness. Statelessness requires the client to provide all information that the server needs for the request
to be successful. This is because the server does not store information from previous requests.

4) Connectedness. Similar to HATEOAS (see clause 7.5.2.4), applications built on ROA should have all of its
resources linked to each other. A hyperlink can be used to connect any resource to another resource.

In gRPC, a client application can directly call a method on a server application on a different machine as if it were a
local object. gRPC is based on the concept of defining a service. The service consists of a set of methods, with their
parameters and return types, that can be called remotely. On the server side, the server implements the methods declared
by the service and runs a gRPC server to handle client calls. The gRPC infrastructure decodes incoming requests,
executes service methods, and encodes service responses. On the client side, the client has a local object known as stub
(for some languages, the preferred term is client) that implements the same methods as the service. The client can then
just call those methods on the local object, wrapping the parameters for the call in the appropriate ProtoBuf message
type - gRPC looks after sending the request(s) to the server and returning the server's ProtoBuf response(s). gRPC
clients and servers can run and talk to each other in a variety of environments. For example, a gRPC server may be
created in one programming language, and one or more clients may be created in the same or different programming
languages.

By default, gRPC uses ProtoBuf, although it can be used with other data formats such as JSON.

ProtoBuf is an IDL, and as such, the first step involves defining he structure for the data to be serialized in a specific
file, called a proto file. This is an ordinary text file with a .proto extension. ProtoBuf data is structured as messages,
where each message is a small logical record of information containing a series of name-value pairs called fields. When
all of the data structures have been specified, the ProtoBuf compiler (protoc) is used to generate data access classes in
the language(s) defined in the proto definition. The compiler generates gRPC client and server code, as well as the
regular ProtoBuf code for populating, serializing, and retrieving messages. Messages provide simple accessors for each
field, like name() and set_name(), as well as methods to serialize/parse the whole structure to/from raw bytes. These
classes can then be used in applications to populate, serialize, and retrieve those entities from ProtoBuf messages. gRPC
provides strongly typed messages automatically converted using the Protobuf exchange format to the chosen
programming language.

gRPC follows a client-response model of communication for designing web APIs that rely on HTTP2. Hence, gRPC
allows streaming communication and serves multiple requests simultaneously. In addition to that, gRPC also supports
unary communication similar to REST.

HTTP2 supports multiple requests over a single TCP connection (HTTP1.1 does not). This is important, since some
browsers have limits on the number of TCP connections. In HTTP2, browser performance increases significantly
because a large number of requests can be made under a single connection.

Synchronous RPC calls that block until a response arrives from the server are the closest approximation to the
abstraction of a procedure call that RPC aspires to. On the other hand, networks are inherently asynchronous and, in
many scenarios, it is important to start RPCs without blocking the current thread. The gRPC programming API comes
in both synchronous and asynchronous flavors in most languages. gRPC enables four kinds of service methods to be
defined:

1) Unary RPCs. The client sends a single request to the server and gets a single response back.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 172

2) Server streaming RPCs. The client sends a request to the server and gets a sequence of messages back to
read. The client reads from the returned stream until there are no more messages. gRPC guarantees message
ordering within an individual RPC call.

3) Client streaming RPCs. The client writes a sequence of messages and sends them to the server. The client
waits for the server to read them and return its response. gRPC guarantees message ordering within an
individual RPC call.

4) Bidirectional streaming RPCs. The client and server both send a sequence of messages using a read-write
stream. The two streams operate independently, so clients and servers can read and write in whatever order
they like. The order of messages in each stream is preserved.

gRPC allows clients to specify how long they are willing to wait for an RPC to complete before the RPC is terminated
with a DEADLINE_EXCEEDED error. On the server side, the server can query to see if a particular RPC has timed
out, or how much time is left to complete the RPC. A deadline (also called a timeout) is language-specific: some
language APIs work in terms of timeouts (durations of time), and some language APIs work in terms of a deadline
(a fixed point in time) and may or may not have a default deadline. In either case, both the client and server make
independent and local determinations of the success of the call, and their conclusions may not match. For example, an
RPC that finishes successfully on the server side may fail on the client side (e.g. the response arrived after its deadline).
Finally, either the client or the server can cancel an RPC at any time. A cancellation terminates the RPC immediately so
that no further work is done. This means that any changes made before a cancellation are not rolled back.

gRPC relies on HTTP2 protocol, which uses multiplexed streams. Therefore, several clients can send multiple requests
simultaneously without establishing a new TCP connection for each one. Also, the server can send push notifications to
clients via the established connection.

However, gRPC has limited browser support because numerous browsers (usually the older versions) have no mature
support for HTTP2. So, it may require gRPC-web and a proxy layer to perform conversions between HTTP 1.1 and
HTTP2. Therefore, gRPC is currently primarily used for internal services.

7.5.2.7 ENI API Architectural Style Recommendations

Table 7-3 compares the key features of REST, HATEOAS, GraphQL, and gRPC.

Table 7-3: Comparison of API Styles

Concept REST HATEOAS GraphQL gRPC
Abstraction Communication-

Orientated: request-
response model of
HTTP 1.1

Same as REST Data-Orientated: Client
determines data, how it
is served, and in what
format

Programming
Orientated: Services
with Interfaces and
structured messages

Comm Model Unary Client
Request-Response
(e.g. synchronous)

Same as REST Supports sync or async
calls and responses

Unary or Streaming
(Server, Client, or both)
Client-Response

Protocol Typically built on
HTTP1.1

Same as REST Typically built on
HTTP1.1

Requires HTTP 2

Format Many Same as REST Typically JSON ProtoBuf (by default)
Response Sends everything found Sends everything found

with actions
Sends just what is
needed

Defined by data
structures

Payload
Structure

No structure defined Same as REST Defined according to the
GraphQL specification

Strong typing defined by
the ProtoBuf
specification

Browser
Support

Fully supported by all
common browsers

Same as REST Most popular browsers
have GraphQL addons

Fully supported by
HTTP 2 Browsers, else
requires gRPC-web and
a proxy layer

State Stateless Same as REST Stateless with support
of async messages

Stateless

Sync vs.
Async

Synchronous only Same as REST Supports sync or async
calls and responses

Supports unary sync &
async and streaming

Data
Transmission

Heavyweight (formats
need to be serialized)

Same as REST Heavyweight (formats
need to be serialized)

Lightweight (ProtoBuf is
binary)

Human
Readability of
Payload

Full if json is used Same as REST Full if json is used None if ProtoBuf is used

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 173

Concept REST HATEOAS GraphQL gRPC
Different
Languages for
Client and
Server

NONE, needs API
Broker

Same as REST Specification enables
support for different
clients and servers to be
built

YES

Language
Support

NONE, needs third
party tools

Same as REST Specification enables
support for different
clients and servers

ProtoBuf auto converts
messages to client and
server programming
languages

Code on
Demand

Supported by the
architecture

Same as REST Not supported Not supported, but also,
not applicable

Code
Generation

None; a third party tool
is required

Same as REST Native code generation
for support languages

Native code generation
for support languages

7.5.3 ENI API Functional Blocks

7.5.3.1 ENI API Development Functional Block

7.5.3.1.1 Introduction

The purpose of the ENI API Development Functional Block is to enable the developer to program the functionality of
the ENI API Broker. The External Reference Point Eeni-api-dev defines ENI APIs and associated information and metadata
for a developer to create and manage the Functional Blocks that make up the ENI API Broker (see clause 7.2,
Table 7-1b). The ENI API Development Functional Block may be accessible through a number of means, including
APIs, a GUI, and/or CLI.

The ENI API Broker APIs define the following functionality that should be made available at runtime:

1) Proxy Definition.

2) API Management.

3) Request Routing.

4) API Composition.

5) Protocol Translation.

Figure 7-6 shows a simplified overview of the internal architecture of the ENI API Broker.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 174

Figure 7-6: Overview of the ENI API Broker Internal Architecture

7.5.3.1.2 ENI Broker API Orchestration Layer

The ENI Broker API Orchestration Layer separates development and runtime concerns according to the Single
Responsibility Principle [i.9]. Orchestration is how data, information, and inferences are moved through the ENI API
Broker based on APIs. Orchestration can be seen as combining service calls to create higher-level, more useful
composite services, and implies implementing business-level processes combining business-specific services across
applications and information systems.

Orchestration involves decoupling point-to-point integration in favour of chains of operations that can be reused or
changed as a business or its systems need change. For example, if an event triggers a set of complex operations on a set
of data that have interdependencies (e.g. data need to be encrypted, validated, ordered, and deduplicated), then the ENI
API Broker Orchestration Layer will transform the set of possibly encrypted, duplicated, and unordered data into a
stream of unique, ordered, and encrypted data using a set of APIs that are composed in a particular pattern to solve this
problem. This is an example of realizing a service-based framework, where multiple components are wrapped with
endpoints to decouple them from protocols and routing requirements. This enables multiple services to work as one
when implementation requirements demand it.

7.5.3.1.3 ENI Broker API Management Functional Blocks

The ENI Broker API Management Layer controls the internal and external management of the ENI Broker APIs.

Internal functionality includes:

1) The Creation, Reading, Updating, and Deletion (CRUD) of an ENI API.

2) Control the initial deployment status of an ENI API.

3) Control which ENI APIs clients can use.

4) The versioning of an ENI API.

5) The management of metadata for each ENI API.

6) The definition and use of policies for validating each ENI API.

7) Controlling the mode of operation of the ENI API Broker.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 175

CRUD operations of an ENI API shall include defining the capabilities of an ENI API. Examples include defining
metadata for a given ENI API, different persistent schemes for API requests and responses, applicable ENI API
Validation Policies, and transaction functionality (if any).

Controlling the status of an ENI API shall determine whether it is active or inactive (and can or cannot be used in an
operational system), or whether is in a special development or test mode (see below).

Controlling which ENI APIs a client can use should be done using a combination of Roles and metadata from the ENI
Extended Core Model [9], as this prescribes an extensible mechanism to group functionality desired by a client into a
Role that other clients may share, and defines how to attach one or more metadata objects to any other object.

ENI API versioning should be done using the ENI Extended Core Model [9], as this prescribes an extensible
mechanism to attach one or more metadata objects to any other object.

Each ENI API should have attached metadata that describes and/or prescribes how to use this particular API. This
should be done using the ENI Extended Core Model [9].

All ENI APIs shall have a set of one or more policies to validate ENI API requests. ENI API responses may also be
validated. This type of policy is called an ENI API Validation Policy. An ENI API Validation Policy is a type of ENI
Policy (see clause 6.3.9 and [9]) that executes appropriate business logic to determine if an ingress API request to (and
optionally, egress response from) the ENI API Broker is well-formed, unambiguous, and has no syntax or semantic
errors. In particular, an ENI API Validation Policy:

1) shall be constructed using the ENI Extended Policy Model [9];

2) should be context-dependent (this may require multiple policies, one or more for each context);

3) shall be validated by the ENI Broker API Proxy;

4) shall provide a traceable account of the operation of the ENI API Validation Policy;

5) may provide a rate limit to a particular ENI API in terms of role, context, system load, and other factors.

The mode of operation of the ENI API Broker shall include at least the following modes:

1) Developer Mode. This mode places the ENI API Broker into a special state for enabling a developer to
change the functionality of the ENI API Broker. In this state:

a) generic external access to the ENI API Broker shall not be allowed;

b) only personnel having a developer role shall have full access to the ENI API Broker in this mode;

c) special build processes may need to be used.

2) Testing Mode. This mode places the ENI API Broker into a special state for enabling a developer to test the
functionality of the ENI API Broker. In this state:

a) generic external access to the ENI API Broker shall not be allowed;

b) ENI System personnel, along with certified external clients and testing personnel that have a testing role
shall have full access to the ENI API Broker in this mode;

c) special build processes may need to be used;

d) the ability to selectively enable and disable different functionality shall be allowed by personnel having a
developer role.

3) Operational Mode. This mode places the ENI API Broker into a normal operational mode. In this state:

a) generic external access to the ENI API Broker shall be allowed;

b) personnel having a developer role shall have full access to the ENI API Broker (e.g. in case of having to
fix a catastrophic failure);

c) personnel having a developer or an operator role shall have the ability to selectively enable and disable
different functionality;

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 176

d) catching exceptions and other runtime errors shall be allowed by an appropriate role-based entity (e.g. a
developer, an administrator, or an operator).

External functionality includes performance and analytics of ENI APIs. Performance of the ENI API Broker is defined
in terms of appropriate KPIs. These include:

1) How many ENI APIs have been correctly and incorrectly executed?

2) How many ENI APIs had translation problems (e.g. protocol, encoding, format) in translating from external
information to an ENI internal format and vice-versa?

3) How many ENI APIs contained ambiguous content (this is primarily for policy APIs)?

4) How many ENI APIs had to negotiate to resolve error problems?

5) How many requests had violations?

The ENI API Broker should provide analytics of its APIs. Analytics uses the above performance information, as well as
API Event statistics, to provide information suitable for display via reports or preferably, a dashboard. In particular,
analytics offer the capability to filter, sort, aggregate, and infer statistical and trending information about the ENI APIs.
Exemplary analytics information includes:

• Latency and Delay metrics.

• Request and Response codes.

• Requests by Date or Location.

• Requests resulting in an error or failure.

• Requests per ENI External Reference Point.

• Requests by Function.

• Requests per ENI Internal Functional Block.

7.5.3.2 ENI API Runtime Functional Block

The API Runtime Functional Blocks provides a single entry point for all API calls that are sent to the ENI System,
regardless of how the ENI System is deployed (e.g. hosted in an on-premises data center or on a cloud). It accepts
requests that come in remotely over the External Reference Point Eeni-api-in. Similarly, it provides a single entry point for
all responses to API requests, and returns the requested data over the External Reference Point Eeni-api-out (see clause 7.2,
Table 7-1b for the definitions of both of the External Reference Points). The ENI API Broker makes data available in a
way appropriate for the requestor's technology. This goes beyond ensuring that the protocol and encoding are correct.
For examples, a requester on a computer is able to see much more information than a requester viewing the same data
on a mobile phone, since the computer has more powerful functionality. The ENI API Broker can also enable real-time
communication between an external client and an ENI System, as well as between multiple ENI Systems.

The ENI API Broker knows the protocol(s) of incoming API requests, and translates those protocols between the
requester and the ENI System on ingress and between the ENI System and the requester on egress. This translation can
be device-specific (e.g. a web browser or mobile device) or network-specific (e.g. a WAN, LAN, or RAN).

The ENI API Runtime Functional Blocks provide workflow orchestration as it aggregates the requested information
from multiple APIs, bundles the data. and returns it to the requestor in composite form.

7.5.3.3 ENI Management Services Functional Block

API management is an overall solution that manages the entire API lifecycle as well as the ENI API Broker and how
ENI APIs are developed and managed. The goal of API management is to ensure that the needs of developers and
applications that may use the API are being met, concerning organizations that publish or use APIs to monitor an
interface's lifecycle.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 177

The management of the API lifecycle shall include the processes for distributing, controlling, and analysing the APIs
that connect applications and data across the enterprise and across clouds. API lifecycle management enables APIs to be
manageable from design, through implementation, until retirement. The three main phases of the API lifecycle are
creating (building and documenting the API), controlling (applying security) and consuming (publishing and
monetizing your APIs). API gateways fall under the control phase of the API lifecycle - they secure APIs and keep data
safe.

The goal of API management is to allow organizations that use APIs to monitor activity and ensure the needs of the
developers and applications using the API are being met.

The management of the ENI API Broker shall include providing access control, rate limits, and usage policies to govern
the use of APIs. Most API management solutions generally also include the following capabilities:

The management of the development of APIs should include a developer portal and analytics. A developer portal
should provide API documentation along with developer onboarding processes like signup and account administration.
Analytics provide detailed metrics for determining how the ENI APIs are performing, including whether they are
meeting their KPIs as well as how many APIs have failed and why.

7.5.3.4 ENI Security Services Functional Block

API security is a vital element of API management. It protects the ENI APIs against unauthorized access and threats.
API security requires more than authenticating and authorizing user access to the API. Standards and policies shall be
established to protect sensitive data and ensure those data are not leaked or compromised. This is for further study in
Release 4.

7.5.3.5 ENI Analytic Services Functional Block

API analytics focusses on the centralized collection and analysis of API metrics provided by real-time monitoring and
optionally, tools such as dashboards. API analytics allows developers and organizations to see and understand how their
APIs are being used as well as rank their performance. This is for further study in Release 4.

7.5.4 ENI API System Deployment Models

7.5.4.1 On Premise vs. Cloud-Based Deployment

The ENI API Architecture may be deployed on premise or in the cloud. For security reasons, the ENI System backend
systems shall not be available via the Internet.

The advantage of deploying the ENI API Architecture on premise is that the required backend systems that the ENI API
Architecture communicates and interacts with are also on premise. The API Architecture thus serves as an additional
protection and security layer for the backend systems. The advantage of cloud-based deployment models is that they are
typically elastic and scale well. API platforms in the cloud make sense as long as they do not need to connect to secured
backend systems in a private network. If they do, then a virtual private network, or some other means of securing the
network, needs to be used.

7.5.4.2 ENI API Architecture Environment

Large organizations may have a number of legacy systems. In this case, the API Broker shall serve as an API gateway,
enabling legacy APIs and protocols to connect to and interact with ENI APIs.

7.5.4.3 Securing the ENI API Broker from the Internet

Security devices (e.g. firewalls) may be placed between the Internet and the ENI API Broker. MAC and IP level
filtering are typically performed by dedicated bespoke security devices, while application level filtering is performed by
the API runtime Functional Block.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 178

7.5.4.4 Scaling the ENI API Broker

Load balancers may be placed between the ENI API Broker and the Internet. For example, load balancers may be used
to route the traffic from the Internet to one of several nodes of the ENI API Broker (e.g. if it is running as a distributed
system or cluster) to distribute API requests equally among the nodes. Load balancers may also detect the source of the
API request (e.g. the type of client) and type of API request (e.g. its purpose) and preferentially route such APIs to
dedicated processing nodes. Load balancers may also be placed between the ENI API Broker and the ENI System. For
example, the API Broker may send all requests for a specific ENI System function, such as Intent Policy parsing, to a
specific set of load balancers.

7.6 Internal Reference Point Overview
Figure 7-7 shows an overview of the Internal Reference Points that provide internally facing Internal Reference Points
(i.e. Internal Reference Points that communicate data and information between internal ENI Functional Blocks). Such
communication should use the Semantic Bus to ensure that any ENI Functional Block that needs the information can
receive it through an appropriate subscription. Internal Reference Points that are between specific Functional Blocks
may be used, but are discouraged; this is because the six internal ENI Functional Blocks collaborate on the large
majority of operations. Figure 7-6 shows ENI Reference Points for a single domain only.

Figure 7-7: Overview of the ENI Internal Facing External Reference Points

Table 7-4 provides brief descriptions of the Internal Reference Points of ENI.

Table 7-4: ENI Internal Reference Point Overview

Name Brief Definition Interface Functions

Iing-norm
Defines data and information sent by the Data Ingestion
Functional Block to the Normalization Functional Block. This
is a uni-directional interface.

Data from the API Broker is ingested in
preparation for normalization.

Inorm-sem

Defines normalized data and information that are sent to the
Semantic Bus, where subscribed Functional Blocks may
consume the normalized data and information. This is a
uni-directional interface.

The Semantic Bus enables any of the
Internal Functional Blocks to publish data
and/or subscribe to data.

Isem-km

Defines the data and information received by the Knowledge
Management Functional Block from the Semantic Bus, as
well as data and information that the Knowledge
Management Functional Block publishes to the Semantic
Bus. This is a bi-directional interface.

The Knowledge Management Functional
Block shall first define subscriptions that
specify the type of data and information that
it wants to receive from the Semantic Bus.
Then, it automatically receives information
from the Semantic Bus that matches its
subscriptions.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 179

Name Brief Definition Interface Functions

Isem-ca

Defines the data and information received by the
Context-Aware Management Functional Block from the
Semantic Bus, as well as data and information that the
Context Awareness Functional Block publishes to the
Semantic Bus. This is a bi-directional interface.

Same procedure as above.

Isem-cog

Defines the data and information received by the Cognition
Management Functional Block from the Semantic Bus, as
well as data and information that the Cognition Management
Functional Block publishes to the Semantic Bus. This is a
bi-directional interface.

Same procedure as above.

Isem-sa

Defines the data and information received by the Situational
Awareness Functional Block from the Semantic Bus, as well
as data and information that the Situational Awareness
Functional Block publishes to the Semantic Bus. This is a
bi-directional interface.

Same procedure as above.

Isem-mde

Defines the data and information received by the
Model-Driven Engineering Functional Block from the
Semantic Bus, as well as data and information that the
Model-Driven Engineering Functional Block publishes to the
Semantic Bus. This is a bi-directional interface.

Same procedure as above.

Isem-pm

Defines the data and information received by the Policy
Management Functional Block from the Semantic Bus, as
well as data and information that the Policy Management
Functional Block publishes to the Semantic Bus. This is a
bi-directional interface.

Same procedure as above.

Isem-denorm
Defines the data and information received by the
Denormalization Functional Block from the Semantic Bus.
This is a uni-directional interface.

Data, information, and policies that are to be
sent to external entities (e.g. the Assisted
System) are sent from the Semantic Bus to
the Denormalization Functional Block to
begin processing to a form the external
entity can understand.

Idenorm-og
Defines the data and information received by the Output
Generation Functional Block from the Denormalization
Functional Block. This is a uni-directional interface.

Data, information, and policies that are to be
sent to external entities (e.g. the Assisted
System) are sent from the Denormalization
Functional Block to the Output Generation
Functional Block, where they are sent to the
API Broker once the generation is complete.

7.7 Internal Reference Point Definitions

7.7.1 Reference Point Iing-norm

This Internal Reference Point is used to transfer data from the Data Ingestion Functional Block to the Data
Normalization Functional Block. Ingested data may include all types of data, information, knowledge, policies, and
metadata sent from the API Broker through any of the External Reference Points that supply inputs to the Data
Ingestion Functional Block (see Table 7-4 and clause 7.6 for their definitions). This is a uni-directional Internal
Reference Point, meaning that data for processing shall only flow from the Data Ingestion Functional Block to the Data
Normalization Functional Block.

The Data Ingestion Functional Block may generate an event to the Semantic Bus that informs other ENI internal
Functional Blocks of the receipt of new data.

If the Data Ingestion Functional Block is combined with the Data Normalization Functional Block, then this Internal
Reference Point need not be defined.

7.7.2 Reference Point Inorm-sem

This Internal Reference Point is used to transfer normalized data from the Data Normalization Functional Block to the
Semantic Bus. This is a uni-directional Internal Reference Point, meaning that data for processing shall only flow from
the Data Ingestion Functional Block to the Data Normalization Functional Block.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 180

The ENI System shall ingest the data and normalize it. If it is not possible to normalize the data, the ENI System shall
report this to the Assisted System and ask for further information that defines the format, as well as expected
characteristics and behaviour, of these data. Upon receipt of this information, the ENI System shall record this in its
knowledge base and correct the format and content of future recommendations and commands sent to this entity to
facilitate future communications.

7.7.3 Reference Point Isem-km

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Knowledge Management Functional Block that the Knowledge Management Functional Block
has subscribed to. The Knowledge Management Functional Block may send any type of data, information, knowledge,
policies, and metadata to the Semantic Bus that it deems necessary.

This is a bi-directional Internal Reference Point.

7.7.4 Reference Point Isem-ca

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Context-Aware Management Functional Block that the Context-Aware Management Functional
Block has subscribed to. The Context-Aware Management Functional Block may send any type of data, information,
knowledge, policies, and metadata to the Semantic Bus that it deems necessary.

This is a bi-directional Internal Reference Point.

7.7.5 Reference Point Isem-cog

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Cognition Management Functional Block that the Cognition Management Functional Block has
subscribed to. The Cognition Management Functional Block may send any type of data, information, knowledge,
policies, and metadata to the Semantic Bus that it deems necessary.

This is a bi-directional Internal Reference Point.

7.7.6 Reference Point Isem-sa

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Situational Awareness Functional Block that the Situational Awareness Functional Block has
subscribed to. The Situational Awareness Functional Block may send any type of data, information, knowledge,
policies, and metadata to the Semantic Bus that it deems necessary.

This is a bi-directional Internal Reference Point.

7.7.7 Reference Point Isem-mde

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Model-Driven Engineering Functional Block that the Model-Driven Engineering Functional
Block has subscribed to. The Model-Driven Engineering Functional Block may send any type of data, information,
knowledge, policies, and metadata to the Semantic Bus that it deems necessary.

This is a bi-directional Internal Reference Point.

7.7.8 Reference Point Isem-pm

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Policy Management Functional Block that the Policy Management Functional Block has
subscribed to. The Policy Management Functional Block may send any type of data, information, knowledge, policies,
and metadata to the Semantic Bus that it deems necessary.

This is a bi-directional Internal Reference Point.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 181

7.7.9 Reference Point Isem-denorm

This Internal Reference Point is used to transfer data from the Semantic Bus to the Data Denormalization Functional
Block. These data may be data, information, knowledge, policies, and metadata from any internal ENI Functional Block
that is necessary to communicate to the Assisted System or its Designated Entity. This is a uni-directional Internal
Reference Point, meaning that data for processing shall only flow from the Semantic Bus to the Data Denormalization
Functional Block.

The Data Denormalization Functional Block may generate an event to the Semantic Bus that informs other ENI internal
Functional Blocks of the receipt of new data.

If the Output Generation Functional Block is combined with the Data Denormalization Functional Block, then this
Internal Reference Point need not be defined.

7.7.10 Reference Point Idenorm-out

This Internal Reference Point is used to transfer data from the Data Denormalization Functional Block to the Output
Generation Functional Block, where it will be sent by an appropriate External Reference Point (see Figure 7-2 and
clause 7.3 for their definitions). Data output may include all types of data, information, knowledge, policies, and
metadata. This is a uni-directional Internal Reference Point, meaning that data for processing shall only flow from the
Data Denormalization Functional Block to the Output Generation Functional Block.

The Output Generation Functional Block may generate an event to the Semantic Bus that informs other ENI internal
Functional Blocks of the transmission of these data.

7.8 Internal Reference Point Protocol Specification

7.8.1 Introduction

Internal protocols need to run as fast as possible while still providing strong security. The protocols defined in
clause 7.4 of the present document are also applicable for ENI internal protocols (i.e. protocols used over ENI Internal
Reference Points):

• An ENI System should use gRPC and HTTP/2 between distributed Functional Blocks.

• An ENI System may use GraphQL and HTTP/1.1 for specific use cases between distributed Functional
Blocks.

• An ENI System may use REST and HTTP/1.1 for specific use cases between distributed Functional Blocks.

• An ENI System may use HATEOAS and HTTP/1.1 for specific use cases between distributed Functional
Blocks.

7.8.2 Generic Protocols for use with Internal Reference Points

Protocols are only required when Internal Reference Points communicate between distributed Functional Blocks. In that
case, the protocols defined in clause 7.4.2 of the present document should be used.

7.8.3 Specific Protocols for use with Internal Reference Points

Protocols are only required when Internal Reference Points communicate between distributed Functional Blocks. In that
case, the protocols defined in clause 7.4.3 of the present document should be used.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 182

8 ENI API Design

8.1 Introduction
Table 7-3 in clause 7.5.2.7 summarizes the advantages and disadvantages of four popular protocols: REST, HATEOAS,
GraphQL, and gRPC.

As explained in clause 7.5.2, gRPC offers many advantages compared to standard REST for creating APIs. An API
architecture created using gRPC enables multiple functions created in different programming languages to work
together. This is very important in ENI, as it enables different functionality in ENI to be free to use the best language
implementation available. This is particularly important given the wide diversity of functionality used in ENI (e.g. AI,
machine learning, telemetry, and context and situation awareness). gRPC uses the protocol buffers (Protobuf)
messaging format, which is a highly efficient messaging format for serializing structured data while being platform- and
language-agnostic. Transmission speed is much faster using Protobuf, since it reduces message size and is a simpler and
lighter weight protocol. gRPC also uses HTTP2, which uses binary format encapsulation (instead of plain text as in
HTTP1.1). In addition, HTTP2 uses three different types of streaming (see clause 7.5.2.6), which enables code
optimization. gRPC has built-in library features enabling it to intelligently and quickly select which back-end server to
send traffic to. It also supports connection pooling for state-related communications. Finally, gRPC enables native code
generation instead of having to rely on third-party tools to generate code by using its own protoc compiler. This works
in multiple languages and can be used in polyglot environments.

The main disadvantage of gRPC is that it is more difficult to implement than REST due to the fact that there is not
much support yet for this API structure when it comes to third-party tools and code frameworks.

This results in the following requirements:

• An ENI System should use gRPC APIs for communication between it and an Assisted System.

• An ENI System should use gRPC APIs for communication between multiple ENI Systems.

• An ENI System may use GraphQL APIs for communication between it and an Assisted System.

• An ENI System may use GraphQL APIs for communication between multiple ENI Systems.

• An ENI System may use REST APIs for communication between it and an Assisted System.

• An ENI System may use REST APIs for communication between multiple ENI Systems.

• An ENI System may use HATEOAS APIs for communication between it and an Assisted System.

• An ENI System may use HATEOAS APIs for communication between multiple ENI Systems.

8.2 Design Goals
The following are the design goals for ENI APIs:

1) Each ENI API shall be created from the ENI Extended Core Model [9]. This provides inherent extensibility,
and enables each ENI API to use class operations to fulfil all or part of the functionality of the API.

2) API design is an interface for developers. It should therefore be structured for use by developers. For example,
instead of focusing on what a service needs to provide, ENI APIs should be easy for the developer to use. In
particular:

a) An ENI Functional Block shall have groups of similar APIs.

b) Each function in an ENI Functional Block shall have its own set of similar APIs. This supports several
principles in [i.35], such as the Single Responsibility Principle and building modular code.

c) ENI APIs across all ENI Functional Blocks shall have similar naming, structure, error handling, and
other functionality.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 183

d) All ENI APIs shall be able to call class methods to perform all or part of their functions. Software
contracts [i.35] facilitates understanding an API and specifies its behaviour clearly and concisely.

3) Each ENI API should be easy to learn and use. Its functionality should be easy to explain, and obvious from
how it is named.

4) Each API in the ENI API should perform a single function (see the Single Responsibility Principle in [i.35]).

5) Each ENI API should be hard to use incorrectly. Initial versions may not contain all possible functionality,
parameters, and other variations. Such functionality may be added later in a new version of the API.

6) Each ENI API should maximize information hiding [i.35].

7) Each ENI API should be easily discoverable.

8) Each ENI API should be able to be used, understood, created, tested, and debugged independently.

9) It is impossible to define a perfect API. APIs specify not just the interfaces for programmers to understand and
write code against but also for computers to execute, making them brittle and difficult to change. Hence:

a) Each ENI API shall support versioning.

b) Each version of each ENI API should be able to be used. This makes the ENI APIs user-friendly.

c) When an old version of an ENI API is used, the ENI API should inform the user that a newer version is
available.

10) The ENI API users should be able to abort or reset operations and easily get the API back to a normal state.

11) The ENI should help users recognize, diagnose, and recover from errors.

12) The ENI shall provide documentation.

13) The ENI should provide context-specific help.

8.3 Methodology for Constructing APIs

8.3.1 Introduction

The construction of the ENI set of APIs consists of the following phases:

1) A developer shall define a set of paradigms for the ENI Reference Point (Internal or External) that a set of ENI
APIs use.

2) A developer shall define a set of paradigms that are common for all ENI APIs. This provides a common look-
and-feel for the ENI APIs, as well as standard client- and server-side applications and libraries and common
authentication and authorization mechanisms.

3) Once a particular architectural style is chosen, a developer shall conform to applicable standards for that
particular architectural style.

8.3.2 Common API Paradigms

Usability, as well as a common look-and-feel for the ENI APIs is important. Clause 8.2 shall be used to guide usability
and a common look-and-feel.

This extends to consistent usage of standards. In particular:

1) The ENI APIs shall use the same authentication and authorization mechanisms.

2) For specific ENI APIs that require additional security, those ENI APIs should use the same additional security
protection mechanisms.

3) All ENI APIs shall use a secure protocol, as described in clauses 7.4 and 7.8.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 184

4) All ENI APIs shall use the same logging, monitoring, and tracing mechanisms to enable detailed API analytics
to be gathered.

5) Each set of ENI APIs that operate in a particular ENI Functional Block should define limits, quotas and traffic
management policies:

a) Limits and Quotas:

i) Limits and quotas are placed on ENI API requests to protect the ENI System from receiving more
data than it can handle, and to optimize the distribution of the ENI System resources used.

ii) Quotas are used in production systems to ensure that a customer states within their contractual
terms.

iii) Define which limits and quotas are changeable by the developer, and the range of parameters that a
developer is able to use.

iv) Define which limits and quotas are changeable by the end-user (if any), and the range of parameters
that a developer is able to use.

v) Limits may be static or dynamic. A static limit operates as a threshold that, once exceeded, results
in an aborted request and the return of an appropriate error. A dynamic limit will allow a request to
complete but will also return a warning. Repeated exceeding of a dynamic limit will result in
aborting subsequent API requests and the return of an appropriate error.

vi) Policies that are used in a consistent fashion if a limit or quota is exceeded.

b) Traffic Management Policies:

i) An ENI System shall implement load balancing and exponential backoff traffic management
policies.

ii) Define which traffic management policies are changeable by the developer, and the range of
parameters that a developer is able to use.

iii) Load balancing defines fine-grained configuration of how incoming traffic is distributed. A load
balancer has two main parts: a frontend and a backend configuration. The frontend configuration
describes the exposed public or private IP address of the load balancer. The backend configuration
defines how the traffic is distributed.

iv) The ENI API Broker shall provide a default API gateway load balancing mechanism.

v) The ENI API Broker default API gateway load balancing mechanism should support different
configurations optimized for different use cases (e.g. high availability and service chaining).

vi) The ENI API Broker may support the ability for a developer to customize load balancing
functionality.

vii) Exponential backoff is the process of a client periodically retrying a failed request over an
increasing amount of time. Exponential backoff increases the efficiency of bandwidth usage,
reduces the number of requests required to get a successful response, and maximizes the throughput
of requests in concurrent environments.

8.3.3 gRPC API Construction

This clause describes how clauses 8.3.1 and 8.3.2 of the present document are used for the specific case of gRPC APIs
in an ENI System.

gRPC should use a resource-orientated architectural design style (see clause 7.5.2.6). Resources are named entities
(e.g. an end-user service), and resource names are their identifiers. Each resource shall have its own unique resource
name. The resource name shall consist of the resource ID, the ID(s) of any parent resources, and its API service name.

gRPC APIs should use scheme-less URIs (i.e. a URI that does not specify a protocol to use) for resource names. This
enables gRPC APIs to be familiar to users of REST URL conventions. In addition, this enables their behaviour to be
similar to a network file path. Finally, this enables gRPC APIs to be mapped to REST URLs.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 185

A collection is a type of resource that contains a list of sub-resources of identical type. Collections can contain
collections. For example, a directory is a collection of file resources, and a service collection could contain a collection
of end-user services and a collection of ENI internal services. The resource name is organized hierarchically using
collection IDs and resource IDs, separated by forward slashes. If a resource contains a sub-resource, the sub-resource's
name shall be formed by specifying the parent resource name followed by the sub-resource's ID separated by forward
slashes. For example, a resource of type service has a collection of services, where each service has a collection of
objects.

Protocol Buffers (ProtoBuf) is a data serialization protocol that is used to exchange data. The serialization process
requires that the structure of data to be exchanged is defined in a .proto file using the Protocol Buffers language (.proto
file syntax); this step is also known as defining a Protocol Buffers message type (see clause 7.5.2.6). The ProtoBuf
compiler then reads the .proto file, and compiles the data structure into a class in the target language, which can then be
used to manipulate the data programmatically. In addition, gRPC offers a special plugin for the ProtoBuf compiler that
compiles .proto files to server-side and client-side artifacts for gRPC API services, in addition to the data classes. This
requires the addition of service definitions to the .proto files, which describes the gRPC APIs. A service definition
contains the methods that allow consumers to call remotely, the method parameters and message formats to use when
invoking those methods, and so on. Each gRPC API takes one ProtoBuf message type as input (request), and produces
another ProtoBuf message type as output (response).

gRPC defines a set of standard message field definitions that should be used when similar concepts are needed. This
ensures that the same concept has the same name and semantics across different APIs. gRPC also support a set of
common request parameters available across all API methods. These parameters are known as system parameters.
gRPC APIs support this feature in HTTP request headers with keys in lowercase. An example of this feature is
authorization. Standard field and system parameters, as well as naming conventions, are explained in
https://github.com/googleapis/googleapis.

gRPC uses .proto files to define the API and .yaml files to configure the API service. Each API service shall have an
API directory inside an API repository. The API directory should follow the standard gRPC directory layout. The API
directory should contain all API definition files and build scripts (see https://github.com/googleapis/googleapis).

gRPC uses a simple protocol-agnostic error model. This provides a consistent experience across different APIs and
different error contexts (such as asynchronous, batch, or workflow errors). Errors are included in the headers, and errors
should not exceed 2 kilobytes in size.

The error model for gRPC APIs is logically defined by google.rpc. Status, an instance of which is returned to the client
when an API error occurs. Error handling for resource-orientated API design should use a small set of standard errors.
For example, instead of defining different kinds of "not found" errors, the server uses one standard google.rpc.Code.
NOT_FOUND error code and tells the client which specific resource was not found. The smaller error space increases
consistency, reduces the complexity of documentation, affords better idiomatic mappings in client libraries, and reduces
client logic complexity while not restricting the inclusion of actionable information.

Hence, gRPC API shall use the canonical error codes defined by google.rpc.Code. Individual APIs shall not define
additional error codes. The error message should help users understand and resolve the API error easily and quickly.
The following guidelines should be used when writing error messages:

1) ENI API error messages shall be clear and easy to understand.

2) ENI API error messages should be independent about the underlying service implementation and error
context.

3) ENI API error messages should be constructed such that a technical user can respond to the error and correct
it.

4) ENI API error messages should be brief.

5) ENI API error messages may include a link to additional information.

gRPC APIs shall define a set of standard error payloads for error details, which are defined in
google/rpc/error_details.proto. These cover the most common needs for API errors, such as quota failure and invalid
parameters. Like error codes, developers should use these standard payloads whenever possible, and should not define
custom payloads unless absolutely needed.

https://github.com/googleapis/googleapis
https://github.com/googleapis/googleapis

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 186

Additional error detail types should only be introduced if they can assist application code to handle the errors. If the
error information can only be handled by humans, the developer should rely on the error message content and let
developers handle it manually rather than introducing additional error detail types.

Common performance paradigms include:

1) Keepalive pings should be used to keep HTTP/2 connections alive during periods of inactivity to allow initial
RPCs to be made quickly without a delay.

2) Streaming RPCs should be used when handling a long-lived logical flow of data from the client-to-server,
server-to-client, or in both directions. Streams can avoid continuous RPC initiation, which includes connection
load balancing at the client-side, starting a new HTTP/2 request at the transport layer, and invoking a user-
defined method handler on the server side. However, streams cannot be load balanced once they have started
and can be hard to debug for stream failures. Streams should be used to optimize the application, not gRPC.

3) Each gRPC channel should use zero or more HTTP/2 connections. Each connection should place a limit on
the number of concurrent streams. When the number of active RPCs on the connection reaches this limit,
additional RPCs shall be queued in the client and will wait for active RPCs to finish before they are sent.
Hence:

a) a separate channel should be created for each area of high load in the application; or

b) a pool of gRPC channels should be used to distribute RPCs over multiple connections.

If compatibility with REST APIs is desired, then the following additional semantics should be used:

1) Get. The Get method shall take a resource name, zero or more parameters, and return the specified resource.
This method shall map to a GET operation. The request message field(s) receiving the resource name shall
map to the URL path. All remaining request message fields shall map to the URL query parameters. A request
body shall not be defined. The returned resource shall map to the entire response body.

2) Create. The Create method shall take a parent resource name, a resource, and zero or more parameters. It
shall create a new resource under the specified parent, and shall return the newly created resource. This
method shall map to a POST operation. An API supporting resource creation shall have a Create method for
each type of resource that can be created. The request message shall have a field parent that specifies the
parent resource name where the resource is to be created. The request message field containing the resource
shall map to the HTTP request body. The request may contain a field named <resource>_id to allow callers to
select a client assigned id. This may be inside the resource. All remaining request message fields shall map to
the URL query parameters. The returned resource shall map to the entire HTTP response body. If the Create
method supports client-assigned resource names and the resource already exists, the request shall fail with an
appropriate error code signifying that the resource already exists. This parallels the design of class operations
in ETSI GS ENI 019 [9].

3) Update. The Update method shall take a request message containing a resource and zero or more parameters.
It shall update the specified resource and its properties, and shall return the updated resource. This method
maps to either a PUT or a PATCH operation, as follows. If an Update method supports full resource update (as
shown in the class operation design in ETSI GS ENI 019 [9]), this method shall map to a PUT operation. If an
Update method supports partial resource update (as shown in the class operation design in ETSI
GS ENI 019 [9]), this method shall map to a PATCH operation. Any Update method tht needs more advanced
patching semantics should use a custom method. The ability to move and/or rename a resource shall not be
included in the Update method; it should be defined using a custom method. The message field receiving the
resource name shall map to the URL path. The field may be in the resource message itself. The request
message field containing the resource shall map to the request body. All remaining request message fields
shall map to the URL query parameters. The response message shall be the updated resource itself. If the API
accepts client-assigned resource names, and a resource name is not found, then the Update method should fail
with an appropriate error code indicating that the resource name was not found. If an Update method also
supports resource creation, then a separate Create method shall be provided.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 187

4) Delete. The Delete method shall take a resource name and zero or more parameters, and deletes the specified
resource. The Delete method should return google.protobuf.Empty. This method shall map to a DELETE
operation. An API shall not rely on any information returned by a Delete method, as it cannot be invoked
repeatedly. The request message field(s) receiving the resource name should map to the URL path. All
remaining request message fields shall map to the URL query parameters. A parameter may be specified to
define if the resource is to be deleted immediately or at a scheduled time. A Delete operation shall not have a
request body. If the Delete method immediately removes the resource, it should return an empty response. If
the Delete method only marks the resource as being deleted, it should return the updated resource.

5) List. The List method shall take a collection name and zero or more parameters as input, and shall return a list
of resources that match the input. This method shall map to a GET operation. This method may be used to
search for resources. List is suited to data from a single collection that is bounded in size and not cached. For
broader cases, the custom method Search should be used. The request message field(s) receiving the name of
the collection whose resources are being listed should map to the URL path. If the collection name maps to the
URL path, the last segment of the URL template (the collection ID) shall be a literal. All remaining request
message fields shall map to the URL query parameters. This method shall not contain a request body. The
response body should contain a list of resources along with optional metadata.

Custom methods should only be used for functionality that cannot be easily expressed via the above five methods. In
general, standard methods should be used instead of custom methods whenever possible. A custom method may be
associated with a resource, a collection, or a service. It may take an arbitrary request and return an arbitrary response,
and also supports streaming requests and responses. To map to HTTP, a custom method shall use the following generic
HTTP mapping:

"https://service.name/v?/some/resource/name:customVerb"

where "v?" denotes the current version of the method. The colon (":") is used instead of a forward slash ("/") in order to
separate the custom verb from the resource name. This is necessary in order to support arbitrary paths. Custom methods
should use HTTP POST since it has the most flexible semantics. An important exception is a custom method that
defines Get or List semantics. Custom methods should not use HTTP PATCH. The request message field(s) receiving
the resource name of the resource or collection with which the custom method is associated should map to the URL
path. If the HTTP verb used for the custom method allows an HTTP request body (e.g. POST, PUT, PATCH, or a
custom HTTP verb), the HTTP configuration of that custom method shall use the body: "*" clause and all remaining
request message fields shall map to the HTTP request body. If the HTTP verb used for the custom method does not
accept an HTTP request body (GET, DELETE), the HTTP configuration of such method shall not use the body clause
at all, and all remaining request message fields shall map to the URL query parameters.

8.3.4 gRPC Integration

There are several open source community efforts that are creating a gRPC gateway for integrating gRPC APIs with
other APIs, such as REST.

The ENI System may support creating a gRPC gateway. This is for further study in Release 4 of the present document
(see clause 9).

8.4 Overview of API Functionality

8.4.1 Introduction

Each ENI API runs over a particular ENI External or Internal Reference Point. The applicable protocols shall be those
described in clauses 7.4 and 7.8 of the present document.

gRPC uses a client-server architecture, where the client application can call functions on a server. gRPC defines a
service on the server side that has methods that can be called remotely with their parameters and return types. The client
side has a stub that provides the same methods as the one in the server side. This enables a client to call a function on
the server application hosted in a different machine as if it were in a local object.

Hence, each object may have a set of one or more functions for each structured data object defined in the .proto file.

The following clauses describe the different functions available on each ENI External Reference Point. The functions
for each ENI Internal Reference Point are for further study in Release 4.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 188

8.4.2 External Reference Point Eoss-eni-dat

The functionality of this External Reference Point is defined in clause 7.3.1. Ten resources are defined for this External
Reference Point:

1) a container for ingested data;

2) ingested data and information;

3) a container for normalized data;

4) normalized data and information;

5) a container for data with problems preventing normalization;

6) data with problems preventing normalization;

7) a container for data with solutions enabling normalization;

8) solved normalized data;

9) a container for negotiation information;

10) negotiated information.

The functions are shown in Table 8-1, which provides brief descriptions of each function.

Table 8-1: ENI External Reference Point Eoss-eni-dat Functions from the OSS to the ENI System

Resource
Name Resource URI RPC

Method Description

OSS Input
Data /eoss_data_in

CREATE Creates a new IngestedOSSData resource and stores
ingested data in it

GET Retrieves all ingested data from the IngestedOSSData
resource

OSS Input
Data
Operations

/eoss_data_in/{ingestDataID}
GET Retrieves a single IngestedOSSData resource
UPDATE Modifies a single IngestedOSSData resource
DELETE Deletes a single IngestedOSSData resource

OSS
Normalized
Data

/eoss_normalized_data
CREATE Creates a new NormalizedOSSData resource

GET Retrieves all normalized data from the
NormalizedOSSData resource

OSS
Normalized
Data
Operations

/eoss_normalized_data/
{normalizedDataID}

GET Retrieves an existing NormalizedOSSData resource
UPDATE Modifies an existing NormalizedOSSData resource

DELETE Deletes an existing NormalizedOSSData resource

OSS
Normalized
Data having
Problems

/eoss_normalized_data/
{normalizedDataID}/problem

CREATE Creates a new NormalizedOSSDataProblem resource

GET Retrieves all NormalizedOSSDataProblem resources

OSS
Normalized
Data having
Problems
Operations

/eoss_normalized_data/
{normalizedDataID}/problem
/{problemID}

GET Retrieves an individual NormalizedOSSDataProblem
resource

UPDATE
Modifies an individual NormalizedOSSDataProblem
resource

DELETE Deletes an individual NormalizedOSSDataProblem
resource

OSS
Normalized
Data with
Solutions

/eoss_normalized_data/
{normalizedDataID}/solution

CREATE Creates a new NormalizedOSSDataSolution resource

GET Retrieves all NormalizedOSSDataSolution resources

OSS
Normalized
Data with
Solutions
Operations

/eoss_normalized_data/
{normalizedDataID}/solution/
{solutionID}

GET Retrieves an individual NormalizedOSSDataSolution
resource

UPDATE Modifies an individual NormalizedOSSDataSolution
resource

DELETE Deletes an individual NormalizedOSSDataSolution
resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 189

Resource
Name Resource URI RPC

Method Description

OSS
Normalized
Data with
Negotiation

/eoss_normalized_data/
{normalizedDataID}/negotiati
on

CREATE Creates a new NormalizedOSSDataNegotiate resource

GET Retrieves all NormalizedOSSDataNegotiate resources

OSS
Normalized
Data with
Negotiation
Operations

/eoss_normalized_data/
{normalizedDataID}/solution/
{negotiationID}

GET Retrieves an individual NormalizedOSSDataNegotiate
resource

UPDATE Modifies an individual NormalizedOSSDataNegotiate
resource

DELETE Deletes an individual NormalizedOSSDataNegotiate
resource

8.4.3 External Reference Point Eoss-eni-cmd

The functionality of this External Reference Point is defined in clause 7.3.2. Eight resources are defined for this
External Reference Point:

1) a container for recommendations and commands to be sent;

2) recommendations and commands;

3) a container for recommendations and commands that the OSS could not understand;

4) recommendations and command problems;

5) a container for recommendations and commands with solutions that the OSS accepted;

6) solved recommendations and commands;

7) a container for negotiation information;

8) negotiated information.

The functions are shown in Table 8-2, which provides brief descriptions of each function.

Table 8-2: ENI External Reference Point Eoss-eni-cmd Functions from the ENI System to the OSS

Resource Name Resource URI RPC
Method Description

Recommendations
and Commands to
be Sent to the OSS

/eoss_rec_cmd_out
CREATE Creates a new RecommendCommandOSS

resource and stores in it

GET Retrieves all recommendations and commands
from the RecommendCommandOSS resource

Recommendations
and Commands to
be Sent to the OSS
Operations

/eoss_rec_cmd_out/{recCmdID}

GET Retrieves a single RecommendCommandOSS
resource

UPDATE Modifies a single RecommendCommandOSS
resource

DELETE Deletes a single RecommendCommandOSS
resource

Recommendations
and Commands to
be Sent to the OSS
having Problems

/eoss_rec_cmd_out/
{recCmdID}/problem

CREATE Creates a new
RecommendCommandOSSProblem resource

GET Retrieves all
RecommendCommandOSSProblem resources

Recommendations
and Commands to
be Sent to the OSS
having Problems
Operations

/eoss_rec_cmd_out
/{recCmdID}/problem
/{problemID}

GET Retrieves an individual
RecommendCommandOSSProblem

UPDATE Modifies an individual
RecommendCommandOSSProblem

DELETE Deletes an individual
RecommendCommandOSSProblem

Recommendations
and Commands to
be Sent to the OSS
with Solutions

/eoss_rec_cmd_out/
{recCmdID}/solution

CREATE Creates a new
RecommendCommandOSSSolution resource

GET Retrieves all
RecommendCommandOSSSolution resources

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 190

Resource Name Resource URI RPC
Method Description

Recommendations
and Commands to
be Sent to the OSS
with Solutions
Operations

/eoss_rec_cmd_out/
{recCmdID}/solution/
{solutionID}

GET Retrieves an individual
RecommendCommandOSSSolution resource

UPDATE Modifies an individual
RecommendCommandOSSSolution resource

DELETE Deletes an individual
RecommendCommandOSSSolution resource

Recommendations
and Commands to
be Sent to the OSS
with Negotiation

/eoss_rec_cmd_out/
{recCmdID}/negotiation

CREATE Creates a new
RecommendCommandOSSNegotiate resource

GET
Retrieves all
RecommendCommandOSSNegotiate
resources

Recommendations
and Commands to
be Sent to the OSS
with Negotiation
Operations

/eoss_rec_cmd_out/
{recCmdID}/negotiation
{negotiationID}

GET Retrieves an individual
RecommendCommandOSSNegotiate resource

UPDATE
Modifies an individual
RecommendCommandOSSNegotiate resource

DELETE Deletes an individual
RecommendCommandOSSNegotiate resource

8.4.4 External Reference Point Eoss-eni-pol

The functionality of this External Reference Point is defined in clause 7.3.3. Sixteen resources are defined for this
External Reference Point:

1) a container for policies sent by the OSS;

2) OSS input policies;

3) a container for policies not understood by the ENI System;

4) ENI System policies having Problems;

5) a container for policies with solutions that the ENI System accepted;

6) ENI System solved policies;

7) a container for negotiation information for problem policies for the ENI System;

8) negotiated ENI System policy information;

9) a container for policies for sent by the ENI System to the OSS;

10) policies for the OSS;

11) a container for policies not understood by the OSS;

12) OSS policies having Problems;

13) a container for policies with solutions that the OSS accepted;

14) solved OSS policies;

15) a container for negotiation information for problem OSS policies;

16) negotiated OSS policy information.

The functions are shown in Table 8-3 and Table 8-4 for policies sent by the OSS(and received by the ENI System) and
policies sent by the ENI System (and received by the OSS), respectively, along with brief descriptions of each function.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 191

Table 8-3: ENI External Reference Point Eoss-eni-pol for Functions Sent by the OSS to the ENI System

Resource Name Resource URI RPC
Method Description

Policies Sent by
OSS /eoss_policy_in

CREATE Creates a new OSSPolicyData resource and stores
policies sent by the OSS in it

GET Retrieves all policies from the OSSPolicyData resource

Policies Sent by
OSS Operations /eoss_policy_in/{policyID}

GET Retrieves a single policy received from the OSS
UPDATE Modifies a single policy received from the OSS
DELETE Deletes a single policy received from the OSS

Policies Sent by
OSS having
Problems

/eoss_policy_in/{policyID}/
problem

CREATE Creates a new OSSPolicyDataProblem resource for
policies containing problems

GET Retrieves all policies sent by the OSS that the ENI
System has problems understanding

Policies Sent by
OSS having
Problems
Operations

/eoss_policy_in/{policyID}/
problem/{problemID}

GET Retrieves an existing policy sent by the OSS that the
ENI System cannot understand

UPDATE Modifies an existing policy sent by the OSS that the
ENI System cannot understand

DELETE Deletes an existing policy sent by the OSS that the ENI
System cannot understand

Policies Sent by
OSS with
Solutions

/eoss_policy_in/{policyID}/
solution

CREATE Creates a new OSSPolicyDataSolution resource

GET Retrieves all policies sent by the OSS that the ENI
System can now understand

Policies Sent by
OSS with
Solutions
Operations

/eoss_policy_in/{policyID}/
solution/{solutionID}

GET Retrieves an existing policy sent by the OSS that the
ENI System can now understand

UPDATE Modifies an existing policy sent by the OSS that the
ENI System can now understand

DELETE Deletes an existing policy sent by the OSS that the ENI
System can now understand

Policies Sent by
OSS with
Negotiation

/eoss_policy_in/{policyID}/
negotiation

CREATE Creates a new OSSPolicyDataNegotiate resource

GET Retrieves all negotiation information for all policies sent
by the OSS to the ENI System to resolve problems

Policies Sent by
OSS with
Negotiation
Operations

/eoss_policy_in/{policyID}/
negotiation/{negotiationID}

GET
Retrieves negotiation information for a selected policy
sent from the OSS that the ENI System can now
understand

UPDATE
Modifies negotiation information for a selected policy
sent from the OSS that the ENI System can now
understand

DELETE
Deletes negotiation information for a selected policy
sent from the OSS that the ENI System can now
understand

Table 8-4: ENI External Reference Point Eoss-eni-pol for Functions Sent by the ENI System to the OSS

Resource Name Resource URI RPC
Method Description

Policies Sent by
the ENI System /eoss_policy_out

CREATE Creates a new ENIOSSPolicyData resource and
stores policies created by the ENI System in it

GET
Retrieves all policies from the ENIOSSPolicyData
resource

Policies Sent by
the ENI System
Operations

/eoss_policy_out/{policyID}
GET Retrieves a single policy created by the ENI System
UPDATE Modifies a single policy created by the ENI System
DELETE Deletes a single policy created by the ENI System

Policies Sent by
the ENI System
having Problems

/eoss_policy_out/{policyID}/
problem

CREATE Creates a new ENIOSSPolicyDataProblem resource

GET Retrieves all policies created by the ENI System that
the OSS has problems understanding

Policies Sent by
the ENI System
having Problems
Operations

/eoss_policy_out/{policyID}/
problem/{problemID}

GET
Retrieves an existing policy sent by the ENI System
that the OSS cannot understand

UPDATE Modifies an existing policy sent by the ENI System
that the OSS cannot understand

DELETE Deletes an existing policy sent by the ENI System
that the OSS cannot understand

Policies Sent by
the ENI System
with Solutions

/eoss_policy_out/{policyID}/
solution

CREATE Creates a new ENIOSSPolicyDataSolution resource

GET Retrieves all policies sent by the ENI System that the
OSS can now understand

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 192

Resource Name Resource URI RPC
Method Description

Policies Sent by
the ENI System
with Solutions
Operations

/eoss_policy_out/{policyID}/
solution/{solutionID}

GET Retrieves an existing policy sent by the ENI System
that the OSS can now understand

UPDATE Modifies an existing policy sent by the ENI System
that the OSS can now understand

DELETE Deletes an existing policy sent by the ENI System
that the OSS can now understand

Policies Sent by
the ENI System
with Negotiation

/eoss_policy_out/{policyID}/
negotiation

CREATE Creates a new ENIOSSPolicyNegotiate resource

GET
Retrieves all negotiation information for all policies
created by the ENI System for the OSS to resolve
problems

Policies Sent by
the ENI System
with Negotiation

/eoss_policy_out/{policyID}/
negotiation/{negotiationID}

GET
Retrieves an existing policy sent by the ENI System
to the OSS to resolve problems that the OSS can
now understand

UPDATE
Modifies negotiation information for a selected policy
sent by the ENI System that the OSS can now
understand

DELETE
Deletes negotiation information for a selected policy
sent by the ENI System that the OSS can now
understand

8.4.5 External Reference Point Eapp-eni-ctx

The functionality of this External Reference Point is defined in clause 7.3.4. Twenty resources are defined for this
External Reference Point, ten resources from the application to the ENI System, and ten resources from the ENI System
to the application. The ten resources from the Application to the ENI System are:

1) container for ingested information;

2) ingested context- and situation-aware information;

3) container for processing and normalizing context- and situation-aware information;

4) processed and normalized context- and situation-aware information;

5) container for processing and normalizing context- and situation-aware information from the application that
the ENI System cannot understand;

6) processed and normalized context- and situation-aware information;

7) container for processing and normalizing context- and situation-aware information from the application that
the ENI System can now understand;

8) processed and normalized context- and situation-aware information;

9) container for negotiation information for resolving problems;

10) negotiated application policy information.

The ten resources from the ENI System to the Application are:

1) container for ingested information;

2) ingested context- and situation-aware information;

3) container for processing and normalizing context- and situation-aware information;

4) processed and normalized context- and situation-aware information;

5) container for processing and normalizing context- and situation-aware information from the ENI System that
the application cannot understand;

6) processed and normalized context- and situation-aware information;

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 193

7) container for processing and normalizing context- and situation-aware information from the ENI System that
the application can now understand;

8) processed and normalized context- and situation-aware information;

9) container for negotiation information for resolving problems;

10) negotiated application policy information.

The functions are shown in Table 8-5 and Table 8-6, which provides brief descriptions of each function in each table.

Table 8-5: ENI External Reference Point Eapp-eni-ctx Functions Sent by the Application to ENI System

Resource Name Resource URI RPC
Method Description

App Input Data
for the ENI
System

/eapp_context_situation_in
CREATE Creates a new CtxtSitApp resource and stores

ingested data in it

GET Retrieves all ingested data from the CtxtSitApp
resource

App Input Data
for the ENI
System
Operations

/eapp_context_situation_in/
{contexSituationtID}

GET Retrieves a single ingested CtxtSitApp resource
UPDATE Modifies a single ingested CtxtSitApp resource

DELETE Deletes a single ingested CtxtSitApp resource

App Input Data
for the ENI
System that is
Normalized

/eapp_context_situation_in/
{contexSituationtID}normaliz
ed

CREATE Creates a new CtxtSitAppNormalized resource

GET Retrieves all normalized data from the
CtxtSitAppNormalized resource

App Input Data
for the ENI
System that is
Normalized
Operations

/eapp_context_situation_in/
{contexSituationtID}normaliz
ed/
{normalizedID}

GET Retrieves an existing CtxtSitAppNormalized resource
UPDATE Modifies an existing CtxtSitAppNormalized resource

DELETE Deletes an existing CtxtSitAppNormalized resource

App Input Data
Normalized
having
Problems

/eapp_context_situation_in/
{contexSituationtID}normaliz
ed/
{normalizedID}/problem

CREATE Creates a new CtxtSitAppNormalizedProblem
resource

GET Retrieves all CtxtSitAppNormalizedProblem resources
that the ENI System could not understand

App Input Data
Normalized
having
Problems
Operations

/eapp_context_situation_in/
{contexSituationtID}normaliz
ed/
{normalizedID}/problem/
{problemID}

GET Retrieves an individual CtxtSitAppNormalizedProblem
resource

UPDATE Modifies an individual CtxtSitAppNormalizedProblem
resource

DELETE Deletes an individual CtxtSitAppNormalizedProblem
resource

App Input Data
Normalized with
Solutions

/eapp_context_situation_in/
{contexSituationtID}normaliz
ed/
{normalizedID}/solution

CREATE Creates a new CtxtSitAppNormalizedSolution
resource

GET Retrieves all CtxtSitAppNormalizedSolution resources
that the ENI System can now understand

App Input Data
Normalized with
Solutions
Operations

/eapp_context_situation_in/
{contexSituationtID}normaliz
ed/
{normalizedID}/solution/
{solutionID}

GET Retrieves an individual normalized data with solutions
UPDATE Modifies an individual normalized data with solutions

DELETE Deletes an individual normalized data with solutions

App Input Data
Normalized with
Negotiation

/eapp_context_situation_in/
{contexSituationtID}normaliz
ed/
{normalizedID}/negotiation

CREATE Creates a new CtxtSitAppNormalizedNegotiate
resource

GET Retrieves all CtxtSitAppNormalizedNegotiate data

App Input Data
Normalized with
Negotiation
Operations

/eapp_context_situation_in/
{contexSituationtID}normaliz
ed/
{normalizedID}/negotiation/
{negotiationID}

GET Retrieves an individual
CtxtSitAppNormalizedNegotiate resource

UPDATE Modifies an individual CtxtSitAppNormalizedNegotiate
resource

DELETE Deletes an individual CtxtSitAppNormalizedNegotiate
resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 194

Table 8-6: ENI External Reference Point Eapp-eni-ctx Functions Sent from the ENI System to Application

Resource
Name Resource URI RPC

Method Description

ENI System
Data for an
Application

/eapp_context_situation_out
CREATE Creates a new CtxtSitENI resource and stores

ingested data in it

GET Retrieves all ingested data from the CtxtSitENI
resource

ENI System
Data for an
Application
Operations

/eapp_context_situation_out/
{contexSituationtID}

GET Retrieves a single ingested CtxtSitENI resource
UPDATE Modifies a single ingested CtxtSitENI resource

DELETE Deletes a single ingested CtxtSitENI resource

ENI System
Data for the
App that is
Normalized

/eapp_context_situation_out/
{contexSituationtID}normalized

CREATE Creates a new CtxtSitENINormalized resource

GET Retrieves all normalized data from the
CtxtSitENINormalized resource

ENI System
Data for the
App that is
Normalized
Operations

/eapp_context_situation_out/
{contexSituationtID}normalized/
{normalizedID}

GET Retrieves an existing CtxtSitENINormalized resource
UPDATE Modifies an existing CtxtSitENINormalized resource

DELETE Deletes an existing CtxtSitENINormalized resource

ENI System
Data for the
App
Normalized
having
Problems

/eapp_context_situation_out/
{contexSituationtID}normalized/
{normalizedID}/problem

CREATE Creates a new CtxtSitENINormalizedProblem
resource

GET Retrieves all CtxtSitENINormalizedProblem
resources that the Application could not understand

ENI System
Data for the
App
Normalized
having
Problems
Operations

/eapp_context_situation_out/
{contexSituationtID}normalized/
{normalizedID}/problem/
{problemID}

GET Retrieves an individual
CtxtSitENINormalizedProblem resource

UPDATE Modifies an individual CtxtSitENINormalizedProblem
resource

DELETE Deletes an CtxtSitENINormalizedProblem resource

ENI System
Data for the
App
Normalized
with
Solutions

/eapp_context_situation_out/
{contexSituationtID}normalized/
{normalizedID}/solution

CREATE Creates a new CtxtSitENINormalizedSolution
resource

GET Retrieves all CtxtSitENINormalizedSolution
resources that the Application can now understand

ENI System
Data for the
App
Normalized
with
Solutions
Operations

/eapp_context_situation_out/
{contexSituationtID}normalized/
{normalizedID}/solution/
{solutionID}

GET Retrieves an individual
CtxtSitENINormalizedSolution resource

UPDATE Modifies an individual CtxtSitENINormalizedSolution
resource

DELETE
Deletes an individual CtxtSitENINormalizedSolution
resource

ENI System
Data for the
App
Normalized
with
Negotiation

/eapp_context_situation_out/
{contexSituationtID}normalized/
{normalizedID}/negotiation

CREATE Creates a new CtxtSitENINormalizedNegotiate
resource

GET Retrieves all CtxtSitENINormalizedNegotiate data

ENI System
Data for the
App
Normalized
with
Negotiation
Operations

/eapp_context_situation_out/
{contexSituationtID}normalized/
{normalizedID}/negotiation/
{negotiationID}

GET Retrieves an individual
CtxtSitENINormalizedNegotiate resource

UPDATE Modifies an individual
CtxtSitENINormalizedNegotiate resource

DELETE Deletes an individual CtxtSitENINormalizedNegotiate
resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 195

8.4.6 External Reference Point Eapp-eni-oth

The functionality of this External Reference Point is defined in clause 7.3.5. Twenty resources are defined for this
External Reference Point, ten resources from the application to the ENI System, and ten resources from the ENI System
to the application. The ten resources from the Application to the ENI System are:

1) container for ingested information;

2) ingested information;

3) container for processing and normalizing information;

4) processed and normalized information;

5) container for processing and normalizing information from the application that the ENI System cannot
understand;

6) processed and normalized information;

7) container for processing and normalizing information from the application that the ENI System can now
understand;

8) processed and normalized information;

9) container for negotiation information for resolving problems;

10) negotiated application information.

The ten resources from the ENI System to the Application are:

1) container for ingested information;

2) ingested information;

3) container for processing and normalizing information;

4) processed and normalized information;

5) container for processing and normalizing information from the ENI System that the application cannot
understand;

6) processed and normalized information;

7) container for processing and normalizing information from the ENI System that the application can now
understand;

8) processed and normalized information;

9) container for negotiation information for resolving problems that the application cannot understand;

10) negotiated application information.

The functions are shown in Table 8-7 and Table 8-8, which provides brief descriptions of each function.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 196

Table 8-7: ENI External Reference Point Eapp-eni-oth Functions from Application to ENI System

Resource
Name Resource URI RPC

Method Description

App Other
Input Data for
the ENI
System

/eapp_data_in_other
CREATE Creates a new OtherAppData resource and

stores ingested data in it

GET Retrieves all ingested data from the
OtherAppData resource

App Other
Input Data for
the ENI
System
Operations

/eapp_data_in_other/{otherDataID}

GET Retrieves a single OtherAppData item
UPDATE Modifies a single OtherAppData resource

DELETE Deletes a single OtherAppData resource

App Other
Input Data for
the ENI
System
Normalized
Data

/eapp_data_in_other/{otherDataID}/
normalized

CREATE Creates a new OtherAppDataNormal resource

GET
Retrieves all normalized data from the
OtherAppDataNormal resource

App Other
Input Data for
the ENI
System
Normalized
Operations

/eapp_data_in_other/{otherDataID}/
normalized/{normalizedDataID}

GET Retrieves an existing OtherAppDataNormal
resource

UPDATE Modifies an existing OtherAppDataNormal
resource

DELETE Deletes an existing OtherAppDataNormal
resource

App Other
Input Data for
the ENI
System
Normalized
having
Problems

/eapp_data_in_other/{otherDataID}/
normalized/{normalizedDataID}/
problem

CREATE Creates a new OtherAppDataNormalProblem
resource

GET Retrieves all OtherAppDataNormalProblem
resources

App Other
Input Data for
the ENI
System
Normalized
having
Problems
Operations

/eapp_data_in_other/{otherDataID}/
normalized/{normalizedDataID}/
problem/{problemID}

GET Retrieves an individual
OtherAppDataNormalProblem resource

UPDATE Modifies an individual
OtherAppDataNormalProblem resource

DELETE Deletes an individual
OtherAppDataNormalProblem resource

App Other
Input Data for
the ENI
System
Normalized
with Solutions

/eapp_data_in_other/{otherDataID}/
normalized/{normalizedDataID}/
solution

CREATE Creates a new OtherAppDataNormalSolution
resource

GET Retrieves all OtherAppDataNormalSolution
resources

App Other
Input Data for
the ENI
System
Normalized
with Solutions
Operations

/eapp_data_in_other/{otherDataID}/
normalized/{normalizedDataID}/
solution/{solutionID}

GET Retrieves an individual
OtherAppDataNormalSolution resource

UPDATE Modifies an individual
OtherAppDataNormalSolution resource

DELETE Deletes an individual
OtherAppDataNormalSolution resource

App Other
Input Data for
the ENI
System
Normalized
with
Negotiation

/eapp_data_in_other/{otherDataID}/
normalized/{normalizedDataID}/
negotiation

CREATE Creates a new OtherAppDataNormalNegotiate
resource

GET Retrieves all OtherAppDataNormalNegotiate
resources

App Other
Input Data for
the ENI
System
Normalized
with
Negotiation
Operations

/eapp_data_in_other/{otherDataID}/
normalized/{normalizedDataID}/
negotiation/{negotiationID}

GET Retrieves an individual
OtherAppDataNormalNegotiate resource

UPDATE Modifies an individual
OtherAppDataNormalNegotiate resource

DELETE Deletes an individual
OtherAppDataNormalNegotiate resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 197

Table 8-8: ENI External Reference Point Eapp-eni-oth Functions from ENI System to Application

Resource
Name Resource URI RPC

Method Description

ENI System
Other Input
Data for the
App

/eapp_data_out_other
CREATE Creates a new OtherENIData resource

and stores ingested data in it

GET Retrieves all ingested data from the
OtherENIData resource

ENI System
Other Input
Data for the
App
Operations

/eapp_data_out_other/{otherDataID}

GET Retrieves a single OtherENIData item

UPDATE Modifies a single OtherENIData
resource

DELETE Deletes a single OtherENIData
resource

ENI System
Other Input
Data for the
App
Normalized
Data

/eapp_data_out_other/{otherDataID}/
normalized

CREATE Creates a new OtherENIDataNormal
resource

GET Retrieves all normalized data from the
OtherENIDataNormal resource

ENI System
Other Input
Data for the
App
Normalized
Operations

/eapp_data_out_other/{otherDataID}/
normalized/{normalizedDataID}

GET
Retrieves an existing
OtherENIDataNormal resource

UPDATE Modifies an existing
OtherENIDataNormal resource

DELETE Deletes an existing
OtherENIDataNormal resource

ENI System
Other Input
Data for the
App
Normalized
having
Problems

/eapp_data_out_other/{otherDataID}/
normalized/{normalizedDataID}/
problem

CREATE Creates a new
OtherENIDataNormalProblem resource

GET
Retrieves all
OtherENIDataNormalProblem
resources

ENI System
Other Input
Data for the
App
Normalized
having
Problems
Operations

/eapp_data_out_other/{otherDataID}/
normalized/{normalizedDataID}/
problem/{problemID}

GET Retrieves an individual
OtherENIDataNormalProblem resource

UPDATE Modifies an individual
OtherENIDataNormalProblem resource

DELETE Deletes an individual
OtherENIDataNormalProblem resource

ENI System
Other Input
Data for the
App
Normalized
with Solutions

/eapp_data_out_other/{otherDataID}/
normalized/{normalizedDataID}/
solution

CREATE Creates a new
OtherENIDataNormalSolution resource

GET
Retrieves all
OtherENIDataNormalSolution
resources

ENI System
Other Input
Data for the
App
Normalized
with Solutions
Operations

/eapp_data_out_other/{otherDataID}/
normalized/{normalizedDataID}/
solution/{solutionID}

GET Retrieves an individual
OtherENIDataNormalSolution resource

UPDATE
Modifies an individual
OtherENIDataNormalSolution resource

DELETE Deletes an individual
OtherENIDataNormalSolution resource

ENI System
Other Input
Data for the
App
Normalized
with
Negotiation

/eapp_data_out_other/{otherDataID}/
normalized/{normalizedDataID}/
negotiation

CREATE
Creates a new
OtherENIDataNormalNegotiate
resource

GET
Retrieves all
OtherENIDataNormalNegotiate
resources

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 198

Resource
Name Resource URI RPC

Method Description

ENI System
Other Input
Data for the
App
Normalized
with
Negotiation
Operations

/eapp_data_out_other/{otherDataID}/
normalized/{normalizedDataID}/
negotiation/{negotiationID}

GET
Retrieves an individual
OtherENIDataNormalNegotiate
resource

UPDATE
Modifies an individual
OtherENIDataNormalNegotiate
resource

DELETE
Deletes an individual
OtherENIDataNormalNegotiate
resource

8.4.7 External Reference Point Eapp-eni-kno

The functionality of this External Reference Point is defined in clause 7.3.6. Twenty resources are defined for this
External Reference Point, ten resources from the application to the ENI System, and ten resources from the ENI System
to the application. The ten resources from the Application to the ENI System are:

1) container for ingested knowledge information;

2) ingested knowledge information;

3) container for processing and normalizing knowledge information;

4) processed and normalized knowledge information;

5) container for processing and normalizing knowledge information from the application that the ENI System
cannot understand;

6) processed and normalized knowledge information;

7) container for processing and normalizing knowledge information from the application that the ENI System can
now understand;

8) processed and normalized knowledge information;

9) container for negotiation information for resolving problems understanding knowledge from the application;

10) negotiated application knowledge information.

The ten resources from the ENI System to the Application are:

1) container for ingested knowledge information;

2) ingested knowledge information;

3) container for processing and normalizing knowledge information;

4) processed and normalized knowledge information;

5) container for processing and normalizing knowledge information from the ENI System that the application
cannot understand;

6) processed and normalized knowledge information;

7) container for processing and normalizing knowledge information from the ENI System that the application can
now understand;

8) processed and normalized knowledge information;

9) container for negotiation knowledge information for resolving problems;

10) negotiated knowledge information.

The functions are shown in Table 8-9 and Table 8-10, which provides brief descriptions of each function.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 199

Table 8-9: ENI External Reference Point Eapp-eni-kno Functions from the Application to the ENI System

Resource
Name Resource URI RPC Method Description

App
Knowledge
Data for the
ENI System

/eapp_knowledge_in
CREATE Creates a new KnowledgeApp resource and stores ingested

data in it

GET Retrieves all ingested data from the KnowledgeApp
resource

App
Knowledge
Data for the
ENI System
Operations

/eapp_ knowledge_in/
{knowledgeID}

GET Retrieves a single KnowledgeApp resource
UPDATE Modifies a single KnowledgeApp resource

DELETE Deletes a single KnowledgeApp resource

App
Knowledge
Data for the
ENI System
Normalized
Data

/eapp_ knowledge_in/
{knowledgeID}/normali
zed

CREATE Creates a new KnowledgeAppNormalized resource

GET Retrieves all normalized data and stores in an existing
KnowledgeAppNormalized resource

App
Knowledge
Data for the
ENI System
Normalized
Data
Operations

/eapp_ knowledge_in/
{knowledgeID}/normali
zed
{normalizedDataID}

GET Retrieves an existing KnowledgeAppNormalized resource
UPDATE Modifies an existing KnowledgeAppNormalized resource

DELETE Deletes an existing KnowledgeAppNormalized resource

App
Knowledge
Data for the
ENI System
Normalized
Data having
Problems

/eapp_ knowledge_in/
{knowledgeID}/normali
zed
{normalizedDataID}/pro
blem

CREATE Creates a new NormalizedAppProblem resource

GET Retrieves all NormalizedAppProblem resources

App
Knowledge
Data for the
ENI System
Normalized
Data having
Problems
Operations

/eapp_ knowledge_in/
{knowledgeID}/normali
zed
{normalizedDataID}/pro
blem/
{problemID}

GET Retrieves an individual NormalizedAppProblem resource
UPDATE Modifies an individual NormalizedAppProblem resource

DELETE Deletes an individual NormalizedAppProblem resource

App
Knowledge
Data for the
ENI System
Normalized
Data with
Solutions

/eapp_ knowledge_in/
{knowledgeID}/normali
zed
{normalizedDataID}/sol
ution

CREATE Creates a new NormalizedAppSolution resource

GET Retrieves all NormalizedAppSolution resources

App
Knowledge
Data for the
ENI System
Normalized
Data with
Solutions
Operations

/eapp_ knowledge_in/
{knowledgeID}/normali
zed
{normalizedDataID}/sol
ution/
{solutionID}

GET Retrieves an individual NormalizedAppSolution resource
UPDATE Modifies an individual NormalizedAppSolution resource

DELETE Deletes an individual NormalizedAppSolution resource

App
Knowledge
Data for the
ENI System
Normalized
Data with
Negotiation

/eapp_ knowledge_in/
{knowledgeID}/normali
zed
{normalizedDataID}/
negotiation

CREATE Creates a new NormalizedAppNegotiate resource

GET Retrieves all NormalizedAppNegotiate resources

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 200

Resource
Name Resource URI RPC Method Description

App
Knowledge
Data for the
ENI System
Normalized
Data with
Negotiation
Operations

/eapp_ knowledge_in/
{knowledgeID}/normali
zed
{normalizedDataID}/
negotiation/{negotiation
ID}

GET Retrieves an individual NormalizedAppNegotiate resource
UPDATE Modifies an individual NormalizedAppNegotiate resource

DELETE Deletes an individual NormalizedAppNegotiate resource

Table 8-10: ENI External Reference Point Eapp-eni-kno Functions from the ENI System to the Application

Resource
Name Resource URI RPC Method Description

ENI System
Knowledge
Data for the
App

/eapp_knowledge_out
CREATE Creates a new KnowledgeENI resource and stores

ingested data in it

GET Retrieves all ingested data from the KnowledgeENI
resource

ENI System
Knowledge
Data for the
App
Operations

/eapp_ knowledge_ out/
{knowledgeID}

GET Retrieves a single KnowledgeENI resource
UPDATE Modifies a single KnowledgeENI resource

DELETE Deletes a single KnowledgeENI resource

ENI System
Knowledge
Data for the
App
Normalized
Data

/eapp_ knowledge_out/
{knowledgeID}/normalize
d

CREATE Creates a new KnowledgeENI resource

GET Retrieves all normalized data and stores in an existing
KnowledgeENINormalized resource

ENI System
Knowledge
Data for the
App
Normalized
Data
Operations

/eapp_ knowledge_out/
{knowledgeID}/normalize
d {normalizedDataID}

GET Retrieves an existing KnowledgeENINormalized resource
UPDATE Modifies an existing KnowledgeENINormalized resource

DELETE Deletes an existing KnowledgeENINormalized resource

ENI System
Knowledge
Data for the
App
Normalized
Data having
Problems

/eapp_ knowledge_out/
{knowledgeID}/normalize
d
{normalizedDataID}/probl
em

CREATE Creates a new NormalizedENIProblem resource

GET Retrieves all NormalizedENIProblem resources

ENI System
Knowledge
Data for the
App
Normalized
Data having
Problems
Operations

/eapp_ knowledge_out/
{knowledgeID}/normalize
d
{normalizedDataID}/probl
em/
{problemID}

GET Retrieves an individual NormalizedENIProblem resource
UPDATE Modifies an individual NormalizedENIProblem resource

DELETE Deletes an individual NormalizedENIProblem resource

ENI System
Knowledge
Data for the
App
Normalized
Data with
Solutions

/eapp_ knowledge_out/
{knowledgeID}/normalize
d
{normalizedDataID}/solut
ion

CREATE Creates a new NormalizedENISolution resource

GET Retrieves all NormalizedENISolution resources

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 201

Resource
Name Resource URI RPC Method Description

ENI System
Knowledge
Data for the
App
Normalized
Data with
Solutions
Operations

/eapp_ knowledge_out/
{knowledgeID}/normalize
d
{normalizedDataID}/solut
ion/
{solutionID}

GET Retrieves an individual NormalizedENISolution resource
UPDATE Modifies an individual NormalizedENISolution resource

DELETE Deletes an individual NormalizedENISolution resource

ENI System
Knowledge
Data for the
App
Normalized
Data with
Negotiation

/eapp_ knowledge_out/
{knowledgeID}/normalize
d {normalizedDataID}/
negotiation

CREATE Creates a new NormalizedENINegotiate resource

GET Retrieves all NormalizedENINegotiate resource

ENI System
Knowledge
Data for the
App
Normalized
Data with
Negotiation
Operations

/eapp_ knowledge_out/
{knowledgeID}/normalize
d {normalizedDataID}/
negotiation/{negotiationI
D}

GET Retrieves an individual NormalizedENINegotiate resource
UPDATE Modifies an individual NormalizedENINegotiate resource

DELETE Deletes an individual NormalizedENINegotiate resource

8.4.8 External Reference Point Eapp-eni-pol

The functionality of this External Reference Point is defined in clause 7.3.7. Twenty resources are defined for this
External Reference Point, ten resources from the application to the ENI System, and ten resources from the ENI System
to the application. The ten resources from the Application to the ENI System are:

1) container for ingested policy information;

2) ingested policy information;

3) container for processing and normalizing policy information;

4) processed and normalized policy information;

5) container for processing and normalizing policy information from the application that the ENI System cannot
understand;

6) processed and normalized policy information;

7) container for processing and normalizing policy information from the application that the ENI System can now
understand;

8) processed and normalized policy information;

9) container for negotiation information for resolving problems understanding policies from the application;

10) negotiated application policy information.

The ten resources from the ENI System to the Application are:

1) container for ingested policy information;

2) ingested policy information;

3) container for processing and normalizing policy information;

4) processed and normalized policy information;

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 202

5) container for processing and normalizing policy information from the ENI System that the application cannot
understand;

6) processed and normalized policy information;

7) container for processing and normalizing policy information from the ENI System that the application can now
understand;

8) processed and normalized policy information;

9) container for negotiation policy information for resolving problems;

10) negotiated policy information.

The functions are shown in Table 8-11 and Table 8-12, which provides brief descriptions of each function.

Table 8-11: ENI External Reference Point Eapp-eni-pol Functions from the Application to the ENI System

Resource
Name Resource URI RPC

Method Description

App Policy
Data for the
ENI System

/eapp_policy_in
CREATE

Creates a new AppPolicyData resource and stores
ingested data in it

GET Retrieves all ingested data from the AppPolicyData
resource

App Policy
Data for the
ENI System
Operations

/eapp_ policy_in/{policyID}

GET Retrieves a single AppPolicyData resource
UPDATE Modifies a single AppPolicyData resource

DELETE Deletes a single AppPolicyData resource

App Policy
Data for the
ENI System
Normalized
Data

/eapp_policy_in/{policyID}/
normalized

CREATE Creates a new AppPolicyDataNormalized resource

GET
Retrieves all normalized data and stores in an existing
AppPolicyDataNormalized resource

App Policy
Data for the
ENI System
Normalized
Data
Operations

/eapp_policy_in/{policyID}/
normalized/{normalizedID}

GET Retrieves an existing AppPolicyDataNormalized resource
UPDATE Modifies an existing AppPolicyDataNormalized resource

DELETE Deletes an existing AppPolicyDataNormalized resource

App Policy
Data for the
ENI System
Normalized
Data having
Problems

/eapp_policy_in/{policyID}/
normalized/{normalizedID}/
problem

CREATE Creates a new AppPolicyDataNormalizedProblem
resource

GET Retrieves all AppPolicyDataNormalizedProblem
resources

App Policy
Data for the
ENI System
Normalized
Data having
Problems
Operations

/eapp_policy_in/{policyID}/
normalized/{normalizedID}/
problem/{problemID}

GET Retrieves an individual
AppPolicyDataNormalizedProblem resource

UPDATE Modifies an individual AppPolicyDataNormalizedProblem
resource

DELETE Deletes an individual AppPolicyDataNormalizedProblem
resource

App Policy
Data for the
ENI System
Normalized
Data with
Solutions

/eapp_policy_in/{policyID}/
normalized/{normalizedID}/
solution

CREATE
Creates a new AppPolicyDataNormalizeSolution
resource

GET Retrieves all AppPolicyDataNormalizeSolution resources

App Policy
Data for the
ENI System
Normalized
Data with
Solutions
Operations

/eapp_policy_in/{policyID}/
normalized/{normalizedID}/
solution/{solutionID}

GET Retrieves an individual AppPolicyDataNormalizeSolution
resource

UPDATE Modifies an individual AppPolicyDataNormalizeSolution
resource

DELETE Deletes an individual AppPolicyDataNormalizeSolution
resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 203

Resource
Name Resource URI RPC

Method Description

App Policy
Data for the
ENI System
Normalized
Data with
Negotiation

/eapp_policy_in/{policyID}/
normalized/{normalizedID}/
negotiation

CREATE Creates a new AppPolicyDataNormalizeNegotiate
resource

GET Retrieves all AppPolicyDataNormalizeNegotiate
resources

App Policy
Data for the
ENI System
Normalized
Data with
Negotiation
Operations

/eapp_policy_in/{policyID}/
normalized/{normalizedID}/
negotiation/{negotiationID}

GET Retrieves an individual
AppPolicyDataNormalizeNegotiate resource

UPDATE Modifies an individual AppPolicyDataNormalizeNegotiate
resource

DELETE Deletes an individual AppPolicyDataNormalizeNegotiate
resource

Table 8-12: ENI External Reference Point Eapp-eni-pol Functions from the ENI System to the Application

Resource
Name Resource URI RPC

Method Description

ENI System
Policy for the
App

/eapp_ policy_out
CREATE Creates a new ENIAppPolicyData resource and stores

ingested data in it
GET Retrieves all ENIAppPolicyData resources

ENI System
Policy for the
App
Operations

/eapp_policy_out/{policyID}

GET Retrieves a single ENIAppPolicyData resource
UPDATE Modifies a single ENIAppPolicyData resource

DELETE Deletes a single ENIAppPolicyData resource

ENI System
Policy for the
App
Normalized
Data

/eapp_policy_out/{policyID}/
normalized

CREATE Creates a new ENIAppPolicyDataNormalized resource

GET Retrieves all ENIAppPolicyDataNormalized resources

ENI System
Policy for the
App
Normalized
Data
Operations

/eapp_policy_out/{policyID}/
normalized/{normalizedID}

GET Retrieves an existing ENIAppPolicyDataNormalized
resource

UPDATE
Modifies an existing ENIAppPolicyDataNormalized
resource

DELETE Deletes an existing ENIAppPolicyDataNormalized
resource

ENI System
Policy for the
App
Normalized
Data having
Problems

/eapp_policy_out/{policyID}/
normalized/{normalizedID}/
problem

CREATE Creates a new ENIAppPolicyDataNormalizedProblem
resource

GET Retrieves all ENIAppPolicyDataNormalizedProblem
resources

ENI System
Policy for the
App
Normalized
Data having
Problems
Operations

/eapp_policy_out/{policyID}/
normalized/{normalizedID}/
problem/{problemID}

GET Retrieves an individual
ENIAppPolicyDataNormalizedProblem resource

UPDATE Modifies an individual
ENIAppPolicyDataNormalizedProblem resource

DELETE Deletes an individual
ENIAppPolicyDataNormalizedProblem resource

ENI System
Policy for the
App
Normalized
Data with
Solutions

/eapp_policy_out/{policyID}/
normalized/{normalizedID}/
solution

CREATE Creates a new ENIAppPolicyDataNormalizedSolution
resource

GET Retrieves all ENIAppPolicyDataNormalizedSolution
resources

ENI System
Policy for the
App
Normalized
Data with
Solutions
Operations

/eapp_policy_out/{policyID}/
normalized/{normalizedID}/
solution/{solutionID}

GET Retrieves an individual
ENIAppPolicyDataNormalizedSolution resource

UPDATE
Modifies an individual
ENIAppPolicyDataNormalizedSolution resource

DELETE Deletes an individual
ENIAppPolicyDataNormalizedSolution resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 204

Resource
Name Resource URI RPC

Method Description

ENI System
Policy for the
App
Normalized
Data with
Negotiation

/eapp_policy_out/{policyID}/
normalized/{normalizedID}/
negotiation

CREATE Creates a new ENIAppPolicyDataNormalizedNegotiate
resources

GET Retrieves all ENIAppPolicyDataNormalizedNegotiate
resources

ENI System
Policy for the
App
Normalized
Data with
Negotiation
Operations

/eapp_policy_out/{policyID}/
normalized/{normalizedID}/
negotiation/{negotiationID}

GET Retrieves an individual
ENIAppPolicyDataNormalizedNegotiate resource

UPDATE Modifies an individual
ENIAppPolicyDataNormalizedNegotiate resource

DELETE Deletes an individual
ENIAppPolicyDataNormalizedNegotiate resource

8.4.9 External Reference Point Ebss-eni-dat

The functionality of this External Reference Point is defined in clause 7.3.8. Ten resources are defined for this External
Reference Point:

1) container for ingested BSS information;

2) ingested BSS information;

3) container for processing and normalizing BSS information;

4) processed and normalized BSS information;

5) container for processing and normalizing BSS information that the ENI System cannot understand;

6) processed and normalized BSS information;

7) container for processing and normalizing BSS information that the ENI System can now understand;

8) processed and normalized BSS information;

9) container for negotiation information for resolving problems understanding BSS information;

10) negotiated BSS information.

The functions are shown in Table 8-13, which provides brief descriptions of each function.

Table 8-13: ENI External Reference Point Ebss-eni-dat Functions from the BSS to the ENI System

Resource
Name Resource URI RPC

Method Description

BSS Input
Data /ebss_data_in

CREATE Creates a new IngestedBSSData resource and stores
ingested data in it

GET Retrieves all ingested data from the IngestedBSSData
resource

BSS Input
Data
Operations

/ebss_data_in/{ingestDataID}
GET Retrieves a single IngestedBSSData resource
UPDATE Modifies a single IngestedBSSData resource
DELETE Deletes a single IngestedBSSData resource

BSS
Normalized
Data

/ebss_data_in/{ingestDataID}/
normalized

CREATE Creates a new NormalizedBSSData resource

GET Retrieves all NormalizedBSSData resources

BSS
Normalized
Data
Operations

/ebss_data_in/{ingestDataID}/
normalized/{normalizedDataID
}

GET Retrieves an existing NormalizedBSSData resource
UPDATE Modifies an existing NormalizedBSSData resource

DELETE Deletes an existing NormalizedBSSData resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 205

Resource
Name Resource URI RPC

Method Description

BSS
Normalized
Data having
Problems

/ebss_data_in/{ingestDataID}/
normalized/{normalizedDataID
}/
problem

CREATE Creates a new NormalizedBSSDataProblem resource

GET Retrieves all NormalizedBSSDataProblem resources

BSS
Normalized
Data having
Problems
Operations

/ebss_data_in/{ingestDataID}/
normalized/{normalizedDataID
}/
problem/{problemID}

GET Retrieves an individual NormalizedBSSDataProblem
resource

UPDATE Modifies an individual NormalizedBSSDataProblem
resource

DELETE Deletes an individual NormalizedBSSDataProblem
resource

BSS
Normalized
Data with
Solutions

/ebss_data_in/{ingestDataID}/
normalized/{normalizedDataID
}/
solution

CREATE Creates a new NormalizedBSSDataSolution resource

GET Retrieves all NormalizedBSSDataSolution resources

BSS
Normalized
Data with
Solutions
Operations

/ebss_data_in/{ingestDataID}/
normalized/{normalizedDataID
}/
solution/{solutionID}

GET
Retrieves an individual NormalizedBSSDataSolution
resource

UPDATE Modifies an individual NormalizedBSSDataSolution
resource

DELETE Deletes an individual NormalizedBSSDataSolution
resource

BSS
Normalized
Data with
Negotiation

/ebss_data_in/{ingestDataID}/
normalized/{normalizedDataID
}/
negotiation

CREATE
Creates a new NormalizedBSSDataNegotiation
resource

GET Retrieves all NormalizedBSSDataNegotiation
resources

BSS
Normalized
Data with
Negotiation
Operations

/ebss_data_in/{ingestDataID}/
normalized/{normalizedDataID
}/
negotiation/{negotiationID}

GET Retrieves an individual NormalizedBSSDataNegotiation
resource

UPDATE
Modifies an individual NormalizedBSSDataNegotiation
resource

DELETE Deletes an individual NormalizedBSSDataNegotiation
resource

8.4.10 External Reference Point Ebss-eni-cmd

The functionality of this External Reference Point is defined in clause 7.3.9. Eight resources are defined for this
External Reference Point:

1) a container for recommendations and commands to be sent;

2) recommendations and commands;

3) a container for recommendations and commands that the OSS could not understand;

4) recommendations and command problems;

5) a container for recommendations and commands with solutions that the OSS accepted;

6) solved recommendations and commands;

7) a container for negotiation information;

8) negotiated information.

The functions are shown in Table 8-14, which provides brief descriptions of each function.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 206

Table 8-14: ENI External Reference Point Ebss-eni-cmd Functions from the ENI System to the BSS

Resource Name Resource URI RPC
Method Description

Recommendations
and Commands to
be Sent to the BSS

/ebss_rec_cmd_out
CREATE Creates a new RecommendCommandBSS

resource and stores in it

GET Retrieves all recommendations and commands
from the RecommendCommandBSS resource

Recommendations
and Commands to
be Sent to the BSS
Operations

/ebss_rec_cmd_out/{recCmdID}

GET Retrieves a single RecommendCommandBSS
resource

UPDATE Modifies a single RecommendCommandBSS
resource

DELETE Deletes a single RecommendCommandBSS
resource

Recommendations
and Commands to
be Sent to the BSS
having Problems

/ebss_rec_cmd_out/
{recCmdID}/problem

CREATE Creates a new
RecommendCommandOSSProblem resource

GET Retrieves all
RecommendCommandOSSProblem resources

Recommendations
and Commands to
be Sent to the BSS
having Problems
Operations

/ebss_rec_cmd_out
/{recCmdID}/problem
/{problemID}

GET Retrieves an individual
RecommendCommandOSSProblem

UPDATE Modifies an individual
RecommendCommandOSSProblem

DELETE Deletes an individual
RecommendCommandOSSProblem

Recommendations
and Commands to
be Sent to the BSS
with Solutions

/ebss_rec_cmd_out/
{recCmdID}/solution

CREATE Creates a new
RecommendCommandOSSSolution resource

GET Retrieves all
RecommendCommandOSSSolution resources

Recommendations
and Commands to
be Sent to the BSS
with Solutions
Operations

/ebss_rec_cmd_out/
{recCmdID}/solution/
{solutionID}

GET Retrieves an individual
RecommendCommandOSSSolution resource

UPDATE Modifies an individual
RecommendCommandOSSSolution resource

DELETE Deletes an individual
RecommendCommandOSSSolution resource

Recommendations
and Commands to
be Sent to the BSS
with Negotiation

/ebss_rec_cmd_out/
{recCmdID}/negotiation

CREATE Creates a new
RecommendCommandOSSNegotiate resource

GET
Retrieves all
RecommendCommandOSSNegotiate
resources

Recommendations
and Commands to
be Sent to the BSS
with Negotiation
Operations

/ebss_rec_cmd_out/
{recCmdID}/negotiation
{negotiationID}

GET
Retrieves an individual
RecommendCommandOSSNegotiate resource

UPDATE Modifies an individual
RecommendCommandOSSNegotiate resource

DELETE Deletes an individual
RecommendCommandOSSNegotiate resource

8.4.11 External Reference Point Ebss-eni-pol

The functionality of this External Reference Point is defined in clause 7.3.10. Sixteen resources are defined for this
External Reference Point:

1) a container for policies sent by the BSS;

2) BSS input policies;

3) a container for policies not understood by the ENI System;

4) ENI System policies having Problems;

5) a container for policies with solutions that the ENI System accepted;

6) ENI System solved policies;

7) a container for negotiation information for problem policies for the ENI System;

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 207

8) negotiated ENI System policy information;

9) a container for policies for sending to the BSS;

10) BSS output policies;

11) a container for policies not understood by the BSS;

12) BSS policies having Problems;

13) a container for policies with solutions that the BSS accepted;

14) solved BSS policies;

15) a container for negotiation information for problem BSS policies;

16) negotiated BSS policy information.

The functions are shown in Table 8-15 and Table 8-16 for policies sent by the BSS (and received by the ENI System)
and policies sent by the ENI System (and received by the BSS), respectively, along with brief descriptions of each
function.

Table 8-15: ENI External Reference Point Ebss-eni-pol Functions from the BSS to the ENI System

Resource
Name Resource URI RPC Method Description

Policies Sent
by BSS /ebss_policy_in

CREATE Creates a new BSSPolicyData resource and stores
policies sent by the BSS in it

GET Retrieves all policies from the BSSPolicyData resource
Policies Sent
by BSS
Operations

/ebss_policy_in/{policyID}
GET Retrieves a single policy received from the BSS
UPDATE Modifies a single policy received from the BSS
DELETE Deletes a single policy received from the BSS

Policies Sent
by BSS having
Problems

/ebss_policy_in/{policyID}/
problem

CREATE Creates a new BSSPolicyDataProblem resource for
policies containing problems

GET Retrieves all policies sent by the BSS that the ENI
System has problems understanding

Policies Sent
by BSS having
Problems
Operations

/ebss_policy_in/{policyID}/
problem/{problemID}

GET Retrieves an existing policy sent by the BSS that the ENI
System cannot understand

UPDATE Modifies an existing policy sent by the BSS that the ENI
System cannot understand

DELETE Deletes an existing policy sent by the BSS that the ENI
System cannot understand

Policies Sent
by BSS with
Solutions

/ebss_policy_in/{policyID}/
solution

CREATE Creates a new BSSPolicyDataSolution resource

GET Retrieves all policies sent by the BSS that the ENI
System can now understand

Policies Sent
by BSS with
Solutions
Operations

/ebss_policy_in/{policyID}/
solution/{solutionID}

GET Retrieves an existing policy sent by the BSS that the ENI
System can now understand

UPDATE Modifies an existing policy sent by the BSS that the ENI
System can now understand

DELETE Deletes an existing policy sent by the BSS that the ENI
System can now understand

Policies Sent
by BSS with
Negotiation

/ebss_policy_in/{policyID}/
negotiation

CREATE Creates a new BSSPolicyNegotiate resource

GET Retrieves all negotiation information for all policies sent
by the BSS to the ENI System to resolve problems

Policies Sent
by BSS with
Negotiation
Operations

/ebss_policy_in/{policyID}/
negotiation/{negotiationID}

GET
Retrieves negotiation information for a selected policy
sent by the BSS that the ENI System can now
understand

UPDATE
Modifies negotiation information for a selected policy sent
by the BSS that the ENI System can now understand

DELETE Deletes negotiation information for a selected policy sent
by the BSS that the ENI System can now understand

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 208

Table 8-16: ENI External Reference Point Eoss-eni-pol for Functions Sent by the ENI System to the OSS

Resource
Name Resource URI RPC

Method Description

Policies Sent
by the ENI
System

/ebss_policy_out
CREATE Creates a new ENIBSSPolicyData resource and stores

policies created by the ENI System in it

GET Retrieves all policies from the ENIBSSPolicyData
resource

Policies Sent
by the ENI
System
Operations

/ebss_policy_out/{policyID}

GET Retrieves a single policy created by the ENI System
UPDATE Modifies a single policy created by the ENI System

DELETE Deletes a single policy created by the ENI System

Policies Sent
by the ENI
System
having
Problems

/ebss_policy_out/{policyID}/
problem

CREATE Creates a new ENIBSSPolicyDataProblem resource

GET Retrieves all policies created by the ENI System that the
BSS has problems understanding

Policies Sent
by the ENI
System
having
Problems
Operations

/ebss_policy_out/{policyID}/
problem/{problemID}

GET Retrieves an existing policy sent by the ENI System that
the BSS cannot understand

UPDATE Modifies an existing policy sent by the ENI System that
the BSS cannot understand

DELETE Deletes an existing policy sent by the ENI System that
the BSS cannot understand

Policies Sent
by the ENI
System with
Solutions

/ebss_policy_out/{policyID}/
solution

CREATE Creates a new ENIBSSPolicyDataSolution resource

GET Retrieves all policies sent by the ENI System that the
BSS can now understand

Policies Sent
by the ENI
System with
Solutions
Operations

/ebss_policy_out/{policyID}/
solution/{solutionID}

GET Retrieves an existing policy sent by the ENI System that
the OSS can now understand

UPDATE Modifies an existing policy sent by the ENI System that
the BSS can now understand

DELETE Deletes an existing policy sent by the ENI System that
the BSS can now understand

Policies Sent
by the ENI
System with
Negotiation

/ebss_policy_out/{policyID}/
negotiation

CREATE Creates a new ENIBSSPolicyDataNegotiate resource

GET
Retrieves all negotiation information for all policies
created by the ENI System for the BSS to resolve
problems

Policies Sent
by the ENI
System with
Negotiation

/ebss_policy_out/{policyID}/
negotiation/{negotiationID}

GET
Retrieves an existing policy sent by the ENI System to
the OSS to resolve problems that the BSS can now
understand

UPDATE
Modifies negotiation information for a selected policy
sent by the ENI System that the BSS can now
understand

DELETE Deletes negotiation information for a selected policy sent
by the ENI System that the BSS can now understand

8.4.12 External Reference Point Eusr-eni-pol

The functionality of this External Reference Point is defined in clause 7.3.11. Sixteen resources are defined for this
External Reference Point:

1) a container for policies sent by the user;

2) user input policies;

3) a container for policies not understood by the ENI System;

4) ENI System policies having Problems;

5) a container for policies with solutions that the ENI System accepted;

6) ENI System solved policies;

7) a container for negotiation information for problem policies for the ENI System;

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 209

8) negotiated ENI System policy information;

9) a container for policies to be sent to the user;

10) policies for the user;

11) a container for policies not understood by the user;

12) user policies having Problems;

13) a container for policies with solutions that the user accepted;

14) solved user policies;

15) a container for negotiation information for problem user policies;

16) negotiated user policy information.

The functions are shown in Table 8-17 and Table 8-18 for policies sent by the user (and received by the ENI System)
and policies sent by the ENI System (and received by the user), respectively, along with brief descriptions of each
function.

Table 8-17: ENI External Reference Point Ebss-eni-pol Functions from the User to the ENI System

Resource
Name Resource URI RPC Method Description

Policies Sent
by User /eusr_policy_in

CREATE Creates a new UserPolicyData resource and stores
policies sent by the user in it

GET Retrieves all UserPolicyData resources
Policies Sent
by User
Operations

/eusr_policy_in/{policyID}
GET Retrieves a single policy received from the user
UPDATE Modifies a single policy received from the user
DELETE Deletes a single policy received from the user

Policies Sent
by User
having
Problems

/eusr_policy_in/{policyID}/
problem

CREATE Creates a new UserPolicyDataProblem resource for
policies containing problems

GET Retrieves all policies sent by the user that the ENI
System has problems understanding

Policies Sent
by User
having
Problems
Operations

/eusr_policy_in/{policyID}/
problem/{problemID}

GET Retrieves an existing policy sent by the user that the ENI
System cannot understand

UPDATE
Modifies an existing policy sent by the user that the ENI
System cannot understand

DELETE Deletes an existing policy sent by the user that the ENI
System cannot understand

Policies Sent
by User with
Solutions

/eusr_policy_in/{policyID}/
solution

CREATE Creates a new UserPolicyDataSolution resource

GET Retrieves all policies sent by the user that the ENI
System can now understand

Policies Sent
by User with
Solutions
Operations

/eusr_policy_in/{policyID}/
solution/{solutionID}

GET Retrieves an existing policy sent by the BSS that the ENI
System can now understand

UPDATE
Modifies an existing policy sent by the BSS that the ENI
System can now understand

DELETE Deletes an existing policy sent by the BSS that the ENI
System can now understand

Policies Sent
by User with
Negotiation

/eusr_policy_in/{policyID}/
negotiation

CREATE Creates a new UserPolicyDataNegotaiate resource

GET Retrieves all negotiation information for all policies sent
by the user to the ENI System to resolve problems

Policies Sent
by User with
Negotiation
Operations

/eusr_policy_in/{policyID}/
negotiation/{negotiationID}

GET
Retrieves negotiation information for a selected policy
sent by the user that the ENI System can now
understand

UPDATE Modifies negotiation information for a selected policy sent
by the user that the ENI System can now understand

DELETE
Deletes negotiation information for a selected policy sent
by the user that the ENI System can now understand

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 210

Table 8-18: ENI External Reference Point Eoss-eni-pol for Functions Sent by the ENI System to the User

Resource
Name Resource URI RPC

Method Description

Policies Sent
by the ENI
System

/eusr_policy_out
CREATE Creates a new ENIBSSPolicyData resource and stores

policies created by the ENI System in it

GET Retrieves all policies from the ENIBSSPolicyData
resource

Policies Sent
by the ENI
System
Operations

/eusr_policy_out/{policyID}

GET Retrieves a single policy created by the ENI System
UPDATE Modifies a single policy created by the ENI System

DELETE Deletes a single policy created by the ENI System

Policies Sent
by the ENI
System
having
Problems

/eusr_policy_out/{policyID}/
problem

CREATE Creates a new ENIBSSPolicyDataProblem resource

GET Retrieves all policies created by the ENI System that the
BSS has problems understanding

Policies Sent
by the ENI
System
having
Problems
Operations

/eusr_policy_out/{policyID}/
problem/{problemID}

GET Retrieves an existing policy sent by the ENI System that
the BSS cannot understand

UPDATE Modifies an existing policy sent by the ENI System that
the BSS cannot understand

DELETE Deletes an existing policy sent by the ENI System that
the BSS cannot understand

Policies Sent
by the ENI
System with
Solutions

/eusr_policy_out/{policyID}/
solution

CREATE Creates a new ENIBSSPolicyDataSolution resource

GET Retrieves all policies sent by the ENI System that the
BSS can now understand

Policies Sent
by the ENI
System with
Solutions
Operations

/eusr_policy_out/{policyID}/
solution/{solutionID}

GET Retrieves an existing policy sent by the ENI System that
the OSS can now understand

UPDATE Modifies an existing policy sent by the ENI System that
the BSS can now understand

DELETE Deletes an existing policy sent by the ENI System that
the BSS can now understand

Policies Sent
by the ENI
System with
Negotiation

/eusr_policy_out/{policyID}/
negotiation

CREATE Creates a new ENIBSSPolicyDataNegotiate resource

GET
Retrieves all negotiation information for all policies
created by the ENI System for the BSS to resolve
problems

Policies Sent
by the ENI
System with
Negotiation

/eusr_policy_out/{policyID}/
negotiation/{negotiationID}

GET
Retrieves an existing policy sent by the ENI System to
the OSS to resolve problems that the BSS can now
understand

UPDATE
Modifies negotiation information for a selected policy
sent by the ENI System that the BSS can now
understand

DELETE Deletes negotiation information for a selected policy sent
by the ENI System that the BSS can now understand

8.4.13 External Reference Point Eor-eni-dat

The functionality of this External Reference Point is defined in clause 7.3.12. Ten resources are defined for this
External Reference Point:

1) container for ingested Orchestrator information;

2) ingested Orchestrator information;

3) container for processing and normalizing Orchestrator information;

4) processed and normalized Orchestrator information;

5) container for processing and normalizing Orchestrator information that the ENI System cannot understand;

6) processed and normalized Orchestrator information;

7) container for processing and normalizing Orchestrator information that the ENI System can now understand;

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 211

8) processed and normalized Orchestrator information;

9) container for negotiation information for resolving problems understanding Orchestrator information;

10) negotiated Orchestrator information.

The functions are shown in Table 8-19, which provides brief descriptions of each function.

Table 8-19: ENI External Reference Point Eor-eni-dat Functions from the Orchestrator to the ENI System

Resource
Name Resource URI RPC

Method Description

Orchestrator
Input Data /eor_data_in

CREATE Creates a new IngestedOrchData resource and stores
ingested data in it

GET Retrieves all IngestedOrchData resources
Orchestrator
Input Data
Operations

/eor_data_in/{ingestDataID}
GET Retrieves a single IngestedOrchData resource
UPDATE Modifies a single IngestedOrchData resource
DELETE Deletes a single IngestedOrchData resource

Orchestrator
Input Data
Normalized

/eor_normalized_data
CREATE Creates a new IngestedOrchDataNormalized resource

GET Retrieves all IngestedOrchDataNormalized resources

Orchestrator
Input Data
Normalized
Operations

/eor_normalized_data/
{normalizedDataID}

GET Retrieves an existing IngestedOrchDataNormalized
resource

UPDATE Modifies an existing IngestedOrchDataNormalized
resource

DELETE Deletes an existing IngestedOrchDataNormalized
resource

Orchestrator
Input Data
Normalized
having
Problems

/eor_normalized_data/
{normalizedDataID}/proble
m

CREATE Creates a new IngestedOrchDataNormalizedProblem
resource

GET Retrieves all IngestedOrchDataNormalizedProblem
resources

Orchestrator
Input Data
Normalized
having
Problems
Operations

/eor_normalized_data/
{normalizedDataID}/proble
m
/{problemID}

GET Retrieves an individual
IngestedOrchDataNormalizedProblem resource

UPDATE Modifies an individual
IngestedOrchDataNormalizedProblem resource

DELETE Deletes an individual
IngestedOrchDataNormalizedProblem resource

Orchestrator
Input Data
Normalized
with
Solutions

/eor_normalized_data/
{normalizedDataID}/solution

CREATE Creates a new IngestedOrchDataNormalizedSolution
resource

GET Retrieves all IngestedOrchDataNormalizedSolution
resources

Orchestrator
Input Data
Normalized
with
Solutions
Operations

/eor_normalized_data/
{normalizedDataID}/solution
/
{solutionID}

GET Retrieves an individual
IngestedOrchDataNormalizedSolution resource

UPDATE Modifies an individual
IngestedOrchDataNormalizedSolution resource

DELETE Deletes an individual
IngestedOrchDataNormalizedSolution resource

Orchestrator
Input Data
Normalized
with
Negotiation

/eor_normalized_data/
{normalizedDataID}/negotia
tion

CREATE Creates a new IngestedOrchDataNormalizedNegotiate
resource

GET Retrieves all IngestedOrchDataNormalizedNegotiate
resources

Orchestrator
Input Data
Normalized
with
Negotiation
Operations

/eor_normalized_data/
{normalizedDataID}/solution
/
{solutionID}

GET Retrieves an individual
IngestedOrchDataNormalizedNegotiate resource

UPDATE Modifies an individual
IngestedOrchDataNormalizedNegotiate resource

DELETE Deletes an individual
IngestedOrchDataNormalizedNegotiate resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 212

8.4.14 External Reference Point Eor-eni-cmd

The functionality of this External Reference Point is defined in clause 7.3.13. Eight resources are defined for this
External Reference Point

1) a container for recommendations and commands to be sent to the Orchestrator;

2) recommendations and commands;

3) a container for recommendations and commands that the Orchestrator could not understand;

4) recommendations and command problems;

5) a container for recommendations and commands with solutions that the Orchestrator accepted;

6) solved recommendations and commands;

7) a container for negotiation information;

8) negotiated information.

The functions are shown in Table 8-20, which provides brief descriptions of each function.

Table 8-20: ENI External Reference Point Eor-eni-cmd Functions from
the ENI System to the Orchestrator

Resource Name Resource URI RPC
Method Description

Recommendations
and Commands to
be Sent to the
Orchestrator

/eor_rec_cmd_out
CREATE Creates a new RecommendCommandOrch

resource and stores in it

GET Retrieves all RecommendCommandOrch
resources

Recommendations
and Commands to
be Sent to the
Orchestrator
Operations

/eor_rec_cmd_out/{recCmdID}

GET
Retrieves a single RecommendCommandOrch
resource

UPDATE Modifies a single RecommendCommandOrch
resource

DELETE Deletes a single RecommendCommandOrch
resource

Recommendations
and Commands to
be Sent to the
Orchestrator having
Problems

/eor_rec_cmd_out/
{recCmdID}/problem

CREATE
Creates a new
RecommendCommandOrchProblem resource

GET Retrieves all
RecommendCommandOrchProblem resources

Recommendations
and Commands to
be Sent to the
Orchestrator having
Problems
Operations

/eor_rec_cmd_out
/{recCmdID}/problem
/{problemID}

GET Retrieves an individual
RecommendCommandOrchProblem resource

UPDATE
Modifies an individual
RecommendCommandOrchProblem resource

DELETE Deletes an individual
RecommendCommandOrchProblem resource

Recommendations
and Commands to
be Sent to the
Orchestrator with
Solutions

/eor_rec_cmd_out/
{recCmdID}/solution

CREATE Creates a new
RecommendCommandOrchSolution resource

GET
Retrieves all
RecommendCommandOrchSolution resources

Recommendations
and Commands to
be Sent to the
Orchestrator with
Solutions
Operations

/eor_rec_cmd_out/
{recCmdID}/solution/
{solutionID}

GET Retrieves an individual
RecommendCommandOrchSolution resource

UPDATE Modifies an individual
RecommendCommandOrchSolution resource

DELETE
Deletes an individual
RecommendCommandOrchSolution resource

Recommendations
and Commands to
be Sent to the
Orchestrator with
Negotiation

/eor_rec_cmd_out/
{recCmdID}/negotiation

CREATE Creates a new
RecommendCommandOrchNegotiate resource

GET Retrieves all
RecommendCommandOSSNegotiate resources

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 213

Resource Name Resource URI RPC
Method Description

Recommendations
and Commands to
be Sent to the
Orchestrator with
Negotiation
Operations

/eor_rec_cmd_out/
{recCmdID}/negotiation
{negotiationID}

GET Retrieves an individual
RecommendCommandOSSNegotiate resource

UPDATE Modifies an individual
RecommendCommandOSSNegotiate resource

DELETE Deletes an individual
RecommendCommandOSSNegotiate resource

8.4.15 External Reference Point Eor-eni-pol

The functionality of this External Reference Point is defined in clause 7.3.14. Sixteen resources are defined for this
External Reference Point:

1) a container for policies sent by the Orchestrator;

2) Orchestrator input policies;

3) a container for policies not understood by the ENI System;

4) ENI System policies having Problems;

5) a container for policies with solutions that the ENI System accepted;

6) ENI System solved policies;

7) a container for negotiation information for problem policies for the ENI System;

8) negotiated ENI System policy information;

9) a container for policies to be sent to the Orchestrator;

10) policies for the Orchestrator;

11) a container for policies not understood by the Orchestrator;

12) Orchestrator policies having Problems;

13) a container for policies with solutions that the Orchestrator accepted;

14) solved Orchestrator policies;

15) a container for negotiation information for problem Orchestrator policies;

16) negotiated Orchestrator policy information.

The functions are shown in Table 8-21 and Table 8-22 for policies sent by the user (and received by the ENI System)
and policies sent by the ENI System (and received by the user), respectively, along with brief descriptions of each
function.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 214

Table 8-21: ENI External Reference Point Eusr-eni-pol Functions Sent by the Orchestrator to ENI System

Resource Name Resource URI RPC Method Description
Orchestrator
Policy Input
Data

/eor_policy_in
CREATE Creates a new OrchPolicyData resource and stores

ingested data in it
GET Retrieves all OrchPolicyData resources

Orchestrator
Policy Input
Data
Operations

/eor_policy_in/{policyID}

GET Retrieves a single OrchPolicyData resource
UPDATE Modifies a single OrchPolicyData resource

DELETE Deletes a single OrchPolicyData resource

Orchestrator
Policy Input
Data
Normalized

/eor_policy_in/{policyID}/
normalize

CREATE Creates a new OrchPolicyDataNormalized resource

GET Retrieves all OrchPolicyDataNormalized resources

Orchestrator
Policy Input
Data
Normalized
Operations

/eor_policy_in/{policyID}/
normalize/{normalizedDat
aID}

GET Retrieves an existing OrchPolicyDataNormalized
resource

UPDATE Modifies an existing OrchPolicyDataNormalized
resource

DELETE Deletes an existing OrchPolicyDataNormalized resource
Orchestrator
Policy Input
Data
Normalized
having
Problems

/eor_policy_in/{policyID}/
normalize/{normalizedDat
aID}/
problem

CREATE Creates a new OrchPolicyDataNormalizedProblem
resource

GET Retrieves all OrchPolicyDataNormalizedProblem
resources

Orchestrator
Policy Input
Data
Normalized
having
Problems
Operations

/eor_policy_in/{policyID}/
normalize/{normalizedDat
aID}/
problem/{problemID}

GET
Retrieves an individual
OrchPolicyDataNormalizedProblem resource

UPDATE Modifies an individual
OrchPolicyDataNormalizedProblem resource

DELETE Deletes an individual
OrchPolicyDataNormalizedProblem resource

Orchestrator
Policy Input
Data
Normalized
with
Solutions

/eor_policy_in/{policyID}/
normalize/{normalizedDat
aID}/
solution

CREATE Creates a new OrchPolicyDataNormalizedSolution
resource

GET Retrieves all OrchPolicyDataNormalizedSolution
resources

Orchestrator
Policy Input
Data
Normalized
with
Solutions
Operations

/eor_policy_in/{policyID}/
normalize/{normalizedDat
aID}/
solution/{solutionID}

GET Retrieves an individual
OrchPolicyDataNormalizedSolution resource

UPDATE Modifies an individual
OrchPolicyDataNormalizedSolution resource

DELETE Deletes an individual OrchPolicyDataNormalizedSolution
resource

Orchestrator
Policy Input
Data
Normalized
with
Negotiation

/eor_policy_in/{policyID}/
normalize/{normalizedDat
aID}/
negotiation

CREATE Creates a new OrchPolicyDataNormalizedNegotiate
resource

GET Retrieves all OrchPolicyDataNormalizedNegotiate
resources

Orchestrator
Policy Input
Data
Normalized
with
Negotiation
Operations

/eor_policy_in/{policyID}/
normalize/{normalizedDat
aID}/
negotiation/{negotiationID}

GET
Retrieves an individual
OrchPolicyDataNormalizedNegotiate resource

UPDATE Modifies an individual
OrchPolicyDataNormalizedNegotiate resource

DELETE Deletes an individual
OrchPolicyDataNormalizedNegotiate resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 215

Table 8-22: ENI External Reference Point Eusr-eni-pol Functions Sent by the ENI System to the User

Resource
Name Resource URI RPC Method Description

Policies Sent
by the ENI
System

/eor_policy_out
CREATE Creates a new ENIOrchPolicyData resource and stores

ingested data in it
GET Retrieves all ENIOrchPolicyData resources

Policies Sent
by the ENI
System
Operations

/eor_policy_out/{policyID}

GET Retrieves a single ENIOrchPolicyData resource
UPDATE Modifies a single ENIOrchPolicyData resource

DELETE Deletes a single ENIOrchPolicyData resource

Policies Sent
by the ENI
System having
Problems

/eor_policy_out/{policyID}/
normalize

CREATE Creates a new ENIOrchPolicyDataNormalized resource

GET Retrieves all ENIOrchPolicyDataNormalized resources

Policies Sent
by the ENI
System having
Problems
Operations

/eor_policy_out/{policyID}/
normalize/{normalizedDataI
D}

GET
Retrieves an existing ENIOrchPolicyDataNormalized
resource

UPDATE Modifies an existing ENIOrchPolicyDataNormalized
resource

DELETE Deletes an existing ENIOrchPolicyDataNormalized
resource

Policies Sent
by the ENI
System with
Solutions

/eor_policy_out/{policyID}/
normalize/{normalizedDataI
D}/
problem

CREATE Creates a new ENIOrchPolicyDataNormalizedProblem
resource

GET Retrieves all ENIOrchPolicyDataNormalizedProblem
resources

Policies Sent
by the ENI
System with
Solutions
Operations

/eor_policy_out/{policyID}/
normalize/{normalizedDataI
D}/
problem/{problemID}

GET Retrieves an individual
ENIOrchPolicyDataNormalizedProblem resource

UPDATE Modifies an individual
ENIOrchPolicyDataNormalizedProblem resource

DELETE Deletes an individual
ENIOrchPolicyDataNormalizedProblem resource

Policies Sent
by the ENI
System with
Negotiation

/eor_policy_out/{policyID}/
normalize/{normalizedDataI
D}/
solution

CREATE Creates a new ENIOrchPolicyDataNormalizedSolution
resource

GET Retrieves all ENIOrchPolicyDataNormalizedSolution
resources

Policies Sent
by the ENI
System with
Negotiation

/eor_policy_out/{policyID}/
normalize/{normalizedDataI
D}/
solution/{solutionID}

GET Retrieves an individual
ENIOrchPolicyDataNormalizedSolution resource

UPDATE Modifies an individual
ENIOrchPolicyDataNormalizedSolution resource

DELETE Deletes an individual
ENIOrchPolicyDataNormalizedSolution resource

Policies Sent
by the ENI
System

/eor_policy_out/{policyID}/
normalize/{normalizedDataI
D}/
negotiation

CREATE Creates a new ENIOrchPolicyDataNormalizedNegotiate
resource

GET Retrieves all ENIOrchPolicyDataNormalizedNegotiate
resources

Policies Sent
by the ENI
System
Operations

/eor_policy_out/{policyID}/
normalize/{normalizedDataI
D}/
negotiation/{negotiationID}

GET Retrieves an individual
ENIOrchPolicyDataNormalizedNegotiate resource

UPDATE Modifies an individual
ENIOrchPolicyDataNormalizedNegotiate resource

DELETE
Deletes an individual
ENIOrchPolicyDataNormalizedNegotiate resource

8.4.16 External Reference Point Einf-eni-dat

The functionality of this External Reference Point is defined in clause 7.3.15. Ten resources are defined for this
External Reference Point:

1) container for ingested Infrastructure information;

2) ingested Infrastructure information;

3) container for processing and normalizing Infrastructure information;

4) processed and normalized Infrastructure information;

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 216

5) container for processing and normalizing Infrastructure information that the ENI System cannot understand;

6) processed and normalized Infrastructure information;

7) container for processing and normalizing Infrastructure information that the ENI System can now understand;

8) processed and normalized Infrastructure information;

9) container for negotiation information for resolving problems understanding Infrastructure information;

10) negotiated Infrastructure information.

The functions are shown in Table 8-23, which provides brief descriptions of each function.

Table 8-23: ENI External Reference Point Einf-eni-dat Functions from the Infrastructure to ENI System

Resource Name Resource URI RPC
Method Description

Infrastructure
Input Data /einf_data_in

CREATE Creates a new IngestedInfraData resource and stores
ingested data in it

GET Retrieves all IngestedInfraData resources
Infrastructure
Input Data
Operations

/einf_data_in/{ingestDataID}
GET Retrieves a single IngestedInfraData resource
UPDATE Modifies a single IngestedInfraData resource
DELETE Deletes a single IngestedInfraData resource

Infrastructure
Normalized Data /einf_normalized_data

CREATE Creates a new IngestedInfraDataNormalized resource
GET Retrieves all IngestedInfraDataNormalized resources

Infrastructure
Normalized Data
Operations

/einf_normalized_data/
{normalizedDataID}

GET Retrieves an existing IngestedInfraDataNormalized
resource

UPDATE Modifies an existing IngestedInfraDataNormalized
resource

DELETE Deletes an existing IngestedInfraDataNormalized
resource

Infrastructure
Normalized Data
having
Problems

/einf_normalized_data/
{normalizedDataID}/problem

CREATE Creates a new IngestedInfraDataNormalizedProblem
resource

GET Retrieves all IngestedInfraDataNormalizedProblem
resources

Infrastructure
Normalized Data
having
Problems
Operations

/einf_normalized_data/
{normalizedDataID}/problem
/{problemID}

GET Retrieves an individual
IngestedInfraDataNormalizedProblem resource

UPDATE Modifies an individual
IngestedInfraDataNormalizedProblem resource

DELETE Deletes an individual
IngestedInfraDataNormalizedProblem resource

Infrastructure
Normalized Data
with
Solutions

/einf_normalized_data/
{normalizedDataID}/solution

CREATE Creates a new IngestedInfraDataNormalizedSolution
resource

GET Retrieves all IngestedInfraDataNormalizedSolution
resources

Infrastructure
Normalized Data
with
Solutions
Operations

/einf_normalized_data/
{normalizedDataID}/solution
/
{solutionID}

GET
Retrieves an individual
IngestedInfraDataNormalizedSolution resource

UPDATE Modifies an individual
IngestedInfraDataNormalizedSolution resource

DELETE Deletes an individual
IngestedInfraDataNormalizedSolution resource

Infrastructure
Normalized Data
with
Negotiation

/einf_normalized_data/
{normalizedDataID}/negotiat
ion

CREATE
Creates a new IngestedInfraDataNormalizedNegotiate
resource

GET Retrieves all IngestedInfraDataNormalizedNegotiate
resources

Infrastructure
Normalized Data
with
Negotiation
Operations

/einf_normalized_data/
{normalizedDataID}/solution
/
{solutionID}

GET Retrieves an individual
IngestedInfraDataNormalizedNegotiate resource

UPDATE Modifies an individual
IngestedInfraDataNormalizedNegotiate resource

DELETE Deletes an individual
IngestedInfraDataNormalizedNegotiate resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 217

8.4.17 External Reference Point Einf-eni-cmd

The functionality of this External Reference Point is defined in clause 7.3.16. Eight resources are defined for this
External Reference Point:

1) a container for recommendations and commands to be sent to the Infrastructure;

2) recommendations and commands;

3) a container for recommendations and commands that the Infrastructure could not understand;

4) recommendations and command problems;

5) a container for recommendations and commands with solutions that the Infrastructure accepted;

6) solved recommendations and commands;

7) a container for negotiation information;

8) negotiated information.

The functions are shown in Table 8-24, which provides brief descriptions of each function.

Table 8-24: ENI External Reference Point Einf-eni-cmd Functions from the ENI System to Infrastructure

Resource Name Resource URI RPC
Method Description

Recommendations
and Commands to
be Sent to the
Infrastructure

/einf_rec_cmd_out
CREATE Creates a new RecommendCommandInfra

resource and stores in it

GET Retrieves all RecommendCommandInfra
resources

Recommendations
and Commands to
be Sent to the
Infrastructure
Operations

/einf_rec_cmd_out/{recCmdID}

GET Retrieves a single RecommendCommandInfra
resource

UPDATE Modifies a single RecommendCommandInfra
resource

DELETE Deletes a single RecommendCommandInfra
resource

Recommendations
and Commands to
be Sent to the
Infrastructure
having Problems

/einf_rec_cmd_out/
{recCmdID}/problem

CREATE Creates a new
RecommendCommadInfraProblem resource

GET Retrieves all RecommendCommadInfraProblem
resources

Recommendations
and Commands to
be Sent to the
Infrastructure
having Problems
Operations

/einf_rec_cmd_out
/{recCmdID}/problem
/{problemID}

GET Retrieves an individual
RecommendCommadInfraProblem resource

UPDATE Modifies an individual
RecommendCommadInfraProblem resource

DELETE Deletes an individual
RecommendCommadInfraProblem resource

Recommendations
and Commands to
be Sent to the
Infrastructure with
Solutions

/einf_rec_cmd_out/
{recCmdID}/solution

CREATE Creates a new
RecommendCommadInfraSolution resource

GET Retrieves all RecommendCommadInfraSolution
resources

Recommendations
and Commands to
be Sent to the
Infrastructure with
Solutions
Operations

/einf_rec_cmd_out/
{recCmdID}/solution/
{solutionID}

GET Retrieves an individual
RecommendCommadInfraSolution resource

UPDATE Modifies an individual
RecommendCommadInfraSolution resource

DELETE Deletes an individual
RecommendCommadInfraSolution resource

Recommendations
and Commands to
be Sent to the
Infrastructure with
Negotiation

/einf_rec_cmd_out/
{recCmdID}/negotiation

CREATE Creates a new
RecommendCommadInfraNegotiate resource

GET Retrieves all
RecommendCommadInfraNegotiate resources

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 218

Resource Name Resource URI RPC
Method Description

Recommendations
and Commands to
be Sent to the
Infrastructure with
Negotiation
Operations

/einf_rec_cmd_out/
{recCmdID}/negotiation
{negotiationID}

GET Retrieves an individual
RecommendCommadInfraNegotiate resource

UPDATE Modifies an individual
RecommendCommadInfraNegotiate resource

DELETE Deletes an individual
RecommendCommadInfraNegotiate resource

9 Interacting with Other Standardized Architectures

9.1 Introduction
The ENI System uses policy management, knowledge engineering, and cognition to enhance the operation and
performance of the monitoring, configuration, management, and orchestration processes of the Assisted System. The
ENI System will also offer the automation of these processes. The ENI System does not require any changes to
Reference Points or their interfaces with existing Systems, including NFV MANO, SDN Controllers, or the MEF-LSO
architecture. Rather, ENI uses those definitions and provides adaptation and mediation with external standardized
architectures. However, changes made to existing Assisted Systems to comply with ENI External Reference Points and
ENI APIs will benefit ENI as well as increase the semantics and understanding of interaction between the ENI System
and these existing Assisted Systems.

ENI interacts with architectures from other SDOs using a subset of External Reference Points defined in clause 7.

An Assisted System may contain zero or more SDO Systems. All previous information defined in clauses 3 to 7 still
apply to the Assisted System regardless of how many SDO Systems it contains.

Every clause that follows represents initial thinking of the ENI ISG. Each interaction with each external SDO is pending
future collaboration and liaison work with that SDO.

Clause 8.2 describes a generic architecture that enables ENI to interact with one or more SDO Systems. Clause 8.4
provides preliminary thoughts about how the generic architecture may be applied to NFV MANO.

NOTE: Further work on interaction with NFV MANO, as well as with other SDO Systems, are for further study
in Release 3 of the present document (see clause 9).

9.2 Generic Architecture
Figure 9-1 is a high-level diagram that illustrates how the ENI System may interact with an Assisted System that
includes one or more SDO Systems (e.g. NFV MANO, MEF-LSO, BBF-CloudCO, as well as others that may become
available in the market that are of interest to the ENI ISG) or their Designated Entities. In particular, it shows how ENI
may interact at different levels (e.g. physical, resource, service, customer) of the combination of the SDO System(s) and
the Assisted System or its Designated Entity. There may be zero or more instances of an SDO System in an Assisted
System.

The SDO System layer(s) are arbitrarily shown between the Service and Resource layers. This need not be construed as
a requirement that any particular SDO Component logically exists at that layer. In addition, an SDO System may affect
one or more of the Physical, Resource, Service, or Customer Layers. An SDO System may introduce a new logical layer
as well.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 219

Figure 9-1: Overall view of System Interaction of ENI

Definitions of the above layers are summarized as follows:

• Customer Layer: Customer portal, and status notifications of their services and system health. This interface
is needed as ENI is potentially changing this layer's behaviour.

• Service Layer: Logical constructs that combine multiple elements to deliver a single service.

EXAMPLE: A VPN service is a combination of components, including a firewall service, authentication
service and routing services, blended into a single purpose construct.

• SDO Layer: Functionality provided by a System defined by an SDO. This appears as a set of Functional
Blocks to ENI.

• Resource Layer: Data from all physical and virtualisation telemetry (e.g. CPU, storage, and network).

• Physical Layer: All hardware resources supporting the infrastructure. Information on system health, usage
and resource utilization will contribute to understanding the current state of hardware, and aid in predicting its
future state. For example, this will aid in the optimization of the physical layer when using machine learning
mechanisms.

This release of the ENI System architecture is limited to proposing how telemetry data from an Assisted System that
contains one or more SDO Systems may interact.

NOTE: This topic will be further specified in Release 4 of the present document (see clause 9).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 220

9.3 Generic SDO Interaction Architecture

9.3.1 Introduction

An API Broker may be used to facilitate the interaction between Assisted Systems and the ENI System. This interaction
may include one of two options:

1) direct communication between the ENI System and the Assisted System (or its Designated Entity); and/or

2) direct communication between the ENI System and the SDO System.

The difference is that in the first option, the Assisted System (or its Designated Entity) is responsible for
communicating between ENI and the SDO System, whereas in the second option, the ENI System communicates
directly with the SDO System. In the second option, the SDO System may inform the Assisted System (of which it is a
part) of its interaction with the ENI System. In either of these options, the interaction shall not extend, or require the
extension of, the functionality of the SDO system, or any of its components, beyond what the SDO System has
currently defined in its specifications.

The interaction between the ENI and SDO Systems will use a set of common scenarios to investigate what types of
interactions are possible. These scenarios are not unique to any one particular SDO, and some scenarios may not be
applicable to all SDOs. They are provided to define a common framework to encourage conversation on interaction
between ENI and each SDO System that wants to interoperate with ENI.

A common theme in each scenario is the functionality provided by the SDO System compared to the Assisted System
that contains the SDO System. More specifically, the following five exemplary scenarios examine:

• Passive notification to the SDO System, no interaction with the rest of the Assisted System.

• Data analysis between the ENI and SDO Systems, no interaction with the rest of the Assisted System.

• Active assistance to the SDO System, no interaction with the rest of the Assisted System.

• Active assistance to the entire Assisted System for only those functions that are contained in both the SDO
System and the Assisted System.

• Active assistance to the entire Assisted System, regardless of whether a function is only in the Assisted System
or the SDO System.

The above five scenarios are defined in order of increasing complexity.

NOTE: These are for further study in Release 3 of the present document (see clause 9).

9.4 Interaction with NFV MANO

9.4.1 High Level description of the NFV MANO - ENI Interaction

NOTE 1: The contents of this clause requires a liaison and agreement with the NFV MANO ISG, and is for further
study in Release 3 of the present document (see clause 9).

The interaction of ENI with an NFV MANO-based architecture is shown in the following diagram. Note that the
functionality provided by NFV MANO is only a part of what service providers work with in orchestration. For
example, NFV MANO does not directly monitor or manage some of the components in the Physical Layer, as well as
the most functionality of the Service and Customer Layers. All of these components need to be coordinated. This
coordination may be done by the ENI System.

The High Level NFV MANO - ENI Interaction Architecture Framework is shown in Figure 9-2, where the ENI System
is external to the NFV MANO framework.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 221

Figure 9-2: Interaction between the NFV MANO and ENI

The ENI System shall connect to the NFV MANO framework through specific External Reference Points in the
following four functional areas:

• NFVO (NFV Orchestrator).

• VNFM (VNF Manager).

• VIM (Virtualised Infrastructure Manager).

• NFVI (NFV Infrastructure).

This will enable the collection of appropriate telemetry for ENI to analyse. However, it is unclear, at this point in time,
how ENI can provide recommendations and/or commands to the NFV MANO Assisted System (or its Designated
Entity), as the existing NFV MANO Reference Points are not suitable for conveying such information.

NOTE 2: Appropriate Reference Points are not currently defined by NFV MANO. Hence, this will be work for
Release 3 of the present document (see clause 9), after a liaison has been created between ISG ENI and
ISG NFV.

The purpose of the NFV MANO System is to provide orchestration, management, and control functions. In the
envisaged interaction, the ENI System may support and help to improve these NFV MANO functionalities. ENI may
also enhance the effectiveness of NFV MANO by providing AI-based functionalities as well as context- and
situation-awareness. There are several options for NFV MANO and ENI to interact. One example is using the API
Broker to translate between ENI and NFV MANO APIs. However, equivalent External Reference Points will first need
to be defined by the NFV MANO System for at least the NFV Orchestrator, VNF Manager, and VIM Functional
Blocks. The desire to implement this interaction could also imply the addition and/or modification of External ENI
Reference Points to facilitate this interaction. The advantage of this approach is that the API Broker decouples the ENI
and NFV MANO Systems, so that either can change without directly affecting the other.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 222

The NFV MANO System has specific management responsibilities that are different in scope than those of the ENI
System. The interaction between the NFV MANO and the ENI Systems may take on a number of permutations;
exemplary scenarios are described in the following clauses. The behaviour of both Systems to the messages that are
exchanged in each scenario being proposed shall be defined in clauses 4.4.2.1 and 4.4.3 of the present document.

9.4.2 Initial proposals for interaction scenarios

9.4.2.1 Introduction

The following clauses describe four scenarios of interaction between the ENI and Assisted Systems, where the latter has
an NFV MANO System embedded in it. The first three scenarios limit the ENI System to interacting with the NFV
MANO part of the Assisted System only, while the last scenario removes these restrictions and allows the ENI System
to interact with the entire NFV MANO System.

9.4.2.2 Scenario 1: Passive Notification to NFV MANO

This scenario assumes that interaction between ENI and the Assisted System shall be limited to ENI and NFV MANO.

The ENI System observes the interaction between the Assisted System and the NFV MANO System. The ENI System
may then place information describing the results of analysis performed by ENI in a repository shared by the NFV
MANO and ENI Systems for review and future decision support. In this option, the ENI System shall not send
recommendations or commands to either the Assisted System or the NFV MANO System. The ENI System can only
send notifications to the NFV MANO System when it adds or changes data or information in the shared repository.

9.4.2.3 Scenario 2: Active Data Analysis for NFV MANO

This scenario assumes that interaction between ENI and the Assisted System shall be limited to ENI and NFV MANO.

The ENI System may take on the role of augmented data analysis, and enhance the MANO subsystem via delivery of
decision support to the NFV MANO orchestrator in real time. In this option, the ENI System only sends
recommendations or commands to the NFV MANO System that affect data analysis and related functions, such as trend
prediction. It may also send repository change notifications to the NFV MANO System.

9.4.2.4 Scenario 3: Active Assistance to the NFV MANO System

This scenario assumes that interaction between ENI and the Assisted System shall be limited to ENI and NFV MANO.

The ENI System may take on an expanded role, assisting the NFV MANO System where appropriate. In this option, the
ENI System sends recommendations and commands to the NFV MANO System for all functions that both the ENI and
NFV MANO Systems have. However, the ENI System will not send recommendations and commands to the NFV
MANO System or the Assisted System that affect functionality that NFV MANO does not currently have in its
published specifications. It may also send repository change notifications to the NFV MANO System.

9.4.2.5 Scenario 4: Active Assistance to the Assisted System

This scenario assumes that interaction between ENI and the Assisted System, including NFV MANO, shall be
permitted.

The ENI System may take on a further expanded role, assisting the NFV MANO System where appropriate as well as
providing functionality that the NFV MANO System does not offer to the rest of the Assisted System. In this option, the
ENI System sends recommendations and commands to the NFV MANO System for all functions that both the ENI and
NFV MANO Systems have as well as recommendations and commands to the Assisted System that are from functions
that only the ENI System has. This scenario shall use explicit communication, via ENI External Reference Points, to
ensure that the ENI System, the Assisted System, and the NFV MANO System shall agree on which control,
management operations are done by the ENI System, and which are done by the NFV MANO System. Similarly, the
ENI System, the Assisted System, and the NFV MANO System shall agree on which operations require which type of
messaging protocol (e.g. request-response, or one-way notification, or something else).

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 223

This scenario is applicable to situations where there is an evolution in the network that requires new functionalities that
NFV MANO does not currently address. As an example, this may happen for situations where future network resource
models will require more granular and multi-faceted analysis (mobile devices as cloud resource nodes, etc.), and will
require a complex management capability, which is ideally augmented via ENI.

The ENI System may inform the NFV MANO System of recommendations and commands that it has made to other
portions of the Assisted System, as this may influence the decision process of the NFV MANO System. It may also
send repository change notifications to the NFV MANO System.

NOTE: Work on how decisions based on the closed loop architecture of ENI and the open loop architecture of
NFV MANO is for study in Release 4 of the present document (see clause 9).

9.4.3 Interaction Scenarios for Assisted Policy Management in NFV
MANO

NOTE: This is for further study in Release 4 (see clause 9).

9.5 Interaction with the MEF LSO RA
NOTE: This is for further study in Release 4 (see clause 9).

10 Areas for Future Study

10.1 Open Issues for the Present Document
Void.

10.2 Issues for Future Study
From clause 6.3.2.3.7.4 (Semantic Annotation):

NOTE 1: Release 4 will compare vectorized representations based on word frequencies (e.g. bag-of-words), word
embeddings (e.g. words are mapped into a vector space where the distance between words in the space
is related to the syntactic ad semantic features of the words; and example is word2vec), and document-
level mechanisms (e.g. bi-directional encoder representations from transformers, or BERT) to determine
which (if any) of these approaches could be used effectively in active learning.

From clause 6.3.2.4.2.2 (Detecting Anomalies):

NOTE 2: The following will be examined in Release 4 of the present document.

• Statistical. This uses historical data to model the expected behaviour of a system.

• Probabilistic. Similar to statistical, but uses probabilities or fuzzy algebra to do the comparison.

• Distance-based Metrics. This uses the distance between a newly measured datum and previous data, and
defines the datum as an anomaly if the distance is larger than a pre-defined value.

• Pattern Matching. This compares each new measurement against a database of known anomalies, and
classifies measurements that are more similar to known anomalies than to correct data as anomalies.

• Structural Matching. This compares the structure of the data to known data fields from models and/or
ontologies. If the data matches correct or anomalous data, then a corresponding decision is made.

• Clustering. This projects measured data into a multi-dimensional space. Measurements that do not belong to,
or are too far from a cluster, are classified as anomalies.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 224

• Ensemble Matching. This approach uses a number of different algorithms to analyse each measurement, and
then defines a collective vote from each method.

• Machine Learning. Different types of machine learning algorithms can be used. For example, deep neural
networks (e.g. LSTM, or Long Short-Term Memory, which are a type of recurrent neural network capable of
learning order dependence in sequence prediction problems) could be compared against autoencoders (e.g. a
type of neural network that can be used to learn a compressed representation of raw data, which learns a
condensed representation of the input data).

From clause 6.3.7.4.4 (Architecture of a Cognitive Functional Block):

NOTE 3: Information processing is for further study in Release 4 of the present document.

From clause 6.3.9.6.3.4 (A Single Unified Policy Management Architecture):

NOTE 4: This subject is for further study in Release 4 of the present document.

From clause 6.3.9.6.4 (Policy Management Federation):

NOTE 5: This is for further study in Release 4.

From clause 6.3.11.4.2 (Treating Output Generation as the Inverse of Normalization)

NOTE 6: This is for further study in Release 4.

From clause 6.4.3 (Function of the API Broker):

NOTE 7: An API Broker can also be used for API composition. This item is for further study in Release 4.

From clause 6.5.4 (Recommended Communication Patterns to be Used Between ENI and External Systems):

NOTE 8: This is for further study in Release 4.

From clause 7.3.6 (Reference Point Eapp-eni-kno):

NOTE 9: These data and information will require a special protocol to exchange their content. That protocol will
be defined in Release 4 of the present document.

From clause 9.2 (Generic Architecture):

NOTE 10: This topic will be further specified in Release 4 of the present document.

From clause 9.4.3 (Interaction Scenarios for Assisted Policy Management in NFV MANO):

NOTE 11: This is for further study in Release 4.

From clause 9.5 (Interaction with the MEF LSO RA):

NOTE 12: This is for further study in Release 4.

From clause A.1 (Integration with Other SDOs and Open Source Communities):

NOTE 13: The present document, along with work on other architectures (e.g. ZSM), is for further study in
Release 4.

From clause A.2 (Integration with BBF CloudCO):

NOTE 14: The interaction between the ENI System and various open source communities is for further study in
Release 4.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 225

Annex A (informative):
SDO and Open Source Interactions

A.1 Integration with Other SDOs and Open Source
Communities

A.1.1 Introduction
This informative annex describes preliminary thoughts on integrating ENI with MEF-LSO and the BBF CloudCO
architectures.

NOTE: The present document, along with work on other architectures (e.g. ZSM), is for further study in
Release 4 (see clause 9).

A.1.2 Interaction with BBF CloudCO
The BBF CloudCO (Cloud Central Office) reference architecture is a Central Office Domain that is:

1) leveraging SDN and NFV techniques;

2) running on a cloud-like infrastructure deployed at Central Offices; and

3) accessed through a Northbound API, allowing Operators, or third parties, to consume its functionality, while
hiding how the functionality is achieved from the API consumer.

Figure A-1 shows the interaction between the High-Level ENI Architecture and the BBF CloudCO architecture, see
BBF TR-384 [i.39]. All the functional components that are shown in Figure A-1 are defined in BBF TR-384 [i.39] and
ETSI GS NFV-MAN 001 [1]. The reference point between the ENI System and the BBF CloudCO architecture is being
specified by ETSI ISG ENI. All the other reference points/interfaces are specified in BBF TR-384 [i.39] and ETSI
GS NFV-MAN 001 [1].

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 226

Figure A-1: Interaction between the BBF CloudCO and ENI

In Figure A-1, the shown End to End Service Orchestrator coordinates all client interfaces with regard to their privileges
and views, and resolves any contentions that may arise. Furthermore, the E2E Service Orchestrator coordinates multiple
CloudCO Domain Orchestrators, deployed on specific nodes. The CloudCO Domain Orchestrator manages, controls
and orchestrates each CloudCO Domain that spans over portions of the whole access/edge network. Part of the E2E
Service Orchestrator function is to as well coordinate user plane handoffs when services cross domain boundaries.

In this scenario the ENI System interacts with the CloudCO End-to-End Service Orchestration/OSS/BSS/Portals
functional component via a reference point that is being specified by ISG ENI. The ENI System collects the necessary
information from the CloudCo Domain Orchestrator on topics such as:

1) supported tenants;

2) supported use cases;

3) used and available resources per tenant and use case; and as well;

4) information related to lifecycle management of the virtual environment.

The output of the ENI System can be used for several purposes such as acting on the service/policy/resource module
and engineering rules, recipes for various actions, policies and processes.

A.2 Interaction with Open Source Communities
NOTE: The interaction between the ENI System and various open source communities is for further study in

Release 4.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 227

Annex B (informative):
ENI Architectural Evolution

B.1 ENI Architecture Evolution Motivation
Technology is evolving especially when it comes to Cognition, near natural language processing, deep reasoning and
even situation awareness and context awareness.

Industry agreement as to Policy semantics (not DSL) and data normalization and tools is still work in progress, at best.

Multiple PoC are emerging at ETSI ENI and elsewhere in the industry. These PoC are using off the shelf technology
with limited use of afore mentioned advanced technologies.

Need to coordinate architecture with related SDOs and Industry Consortia.

Need to coordinate Reference Points with other SDOs before finalizing the model. Additional challenges.

Data ingestion: use different tools today, need to be normalized into one common and COORDINATED data with
agreed representation!

Infrastructure (as known as "Existing System") is still silo'ed hard to accomplish coordinated configuration, control and
management of Network with Compute + Storage.

B.2 ENI Architecture Evolution Proposal
• Define few evolutional phases.

• Align PoC, Open Source and other SDO and industry consortia to ENI phases.

• Interact with open source communities!

• Update ENI Architecture based on industry progression.

• The above is designed to make ENI the focal of ML/AI evolution for the Telco industry and for its use of
various Orchestration and Cloud Operation Environments (and network industry?) by ensuring tight coupling.

• Time Limit: limit evolution and publication of successive ENI phases, to no more than 18 months after the
first publication of the ENI Architecture.

B.3 Proposed Definition of the ENI Phases
An "ENI Phase" is defined as compliance with a set of ENI Reference Points and its specific version, as set by the ENI
WG from time to time.

For clarity, it is expected that a Reference Point may be versioned as the ENI architecture evolves.

The architecture document (i.e. the present document) will continue as currently planned and will not slow down or
change course.

For each "ENI Phase", ENI will consider inputs from its documents and members, ongoing PoC, interaction and liaison
with SDO and collaboration with open source communities to determine the set of Reference Points required to be
supported.

An ENI implementation, MAY claim compliance for a given ENI Phase when it is in compliance with a set of
Reference Points set by the ENI WG, as aforementioned.

It is recommended that the Architecture WG will provide specific recommendation of the phases using Reference
Points.

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 228

Annex C (informative):
Bibliography

• The Moral Machine.

https://www.media.mit.edu/projects/moral-machine/overview/

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06) 229

History

Document history

V1.1.1 September 2019 Publication

V2.1.1 December 2021 Publication

V3.1.1 June 2023 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Overview of System Architecture (informative)
	4.1 Introduction
	4.2 Motivation for ENI
	4.3 Benefits of ENI
	4.4 High-Level Description of the ENI System Architecture
	4.4.1 Overall Description
	4.4.2 The Assisted System
	4.4.2.1 Introduction
	4.4.2.2 Communication Options for All Classes of Assisted Systems
	4.4.2.3 Class 1: An Assisted System that has No AI-based Capabilities
	4.4.2.4 Class 2: An Assisted System with AI that is Not in the Control Loop
	4.4.2.5 Class 3: An Assisted System with AI Capabilities in its Control Loop
	4.4.2.5.1 Introduction
	4.4.2.5.2 Class 3 Options

	4.4.2.6 Summary of Interaction between the Assisted System and ENI

	4.4.3 Communication and Interaction with Other External Systems
	4.4.4 Mode of Operation
	4.4.4.1 Allowed Modes of Operation
	4.4.4.2 Setting the Mode of Operation
	4.4.4.3 Interaction with the Assisted System
	4.4.4.4 Selecting a Mode of Operation for a Class of Decisions
	4.4.4.5 Communication of Mode of Operation
	4.4.4.6 Normal Operation of the Selected Mode of Operation
	4.4.4.6.1 Overview
	4.4.4.6.2 Case 1: ENI Indirectly Instructs the Assisted System to Switch Modes
	4.4.4.6.3 Case 2: ENI Directly Instructs the Assisted System to Switch Modes

	4.4.4.7 Normal Operation of the Selected Mode of Operation
	4.4.4.8 Exception Handling for the Selected Mode of Operation

	4.4.5 Functional Concepts
	4.4.5.1 Functional Concepts for Modular System Operation
	4.4.5.2 Overview of Prominent Control Loop Architectures

	4.4.6 ENI Reference Points
	4.4.6.1 Definition of an ENI Reference Point
	4.4.6.2 Definition of an ENI External Reference Point
	4.4.6.3 Definition of an ENI Internal Reference Point

	4.4.7 ENI Interfaces
	4.4.7.1 Definition of an ENI Interface
	4.4.7.2 Definition of an ENI Hardware Interface
	4.4.7.3 Definition of an ENI Software Interface
	4.4.7.4 Definition of an ENI Application Programming Interface
	4.4.7.5 Comparison of ENI Software Interfaces with ENI APIs
	4.4.7.6 Interaction between ENI Hardware and Software Interfaces
	4.4.7.7 Interaction between ENI Hardware and Software APIs

	4.5 Functional Architecture
	4.5.1 Functional Block Diagram of the ENI System
	4.5.2 API Broker
	4.5.2.1 Introduction
	4.5.2.2 Definition of the ENI API Broker
	4.5.2.3 Use of an API Broker in ENI
	4.5.2.4 Alternatives to Using an API Broker

	4.5.3 ENI System Functional Blocks
	4.5.3.1 Introduction
	4.5.3.2 Input Processing
	4.5.3.2.1 Overview
	4.5.3.2.2 Data Ingestion Functional Block
	4.5.3.2.3 Normalization Functional Block

	4.5.3.3 Analysis
	4.5.3.3.1 Knowledge Management and Processing

	4.5.3.4 Situation-based, Model-driven, Policy Generation
	4.5.3.4.1 Overview
	4.5.3.4.2 Situation Awareness Functional Block
	4.5.3.4.3 Model Driven Engineering Functional Block
	4.5.3.4.4 Policy Management Functional Block

	4.5.3.5 Output Generation
	4.5.3.5.1 Overview
	4.5.3.5.2 Denormalization Functional Block
	4.5.3.5.3 Output Generation Functional Block

	4.5.4 Decision-Making
	4.5.4.1 Overview
	4.5.4.2 Decision-Making using Hindsight
	4.5.4.3 Decision-Making using Deterministic Processing
	4.5.4.4 Decision-Making using Predictive Processing
	4.5.4.5 Decision-Making using Cognitive Processing

	4.5.5 Introduction to Artificial Intelligence Mechanisms for Modular Systems

	5 ENI Architectural Requirements
	5.1 Introduction
	5.2 Functional Architectural Requirements for ENI Operation
	5.3 Architectural Requirements for Mode of Operation
	5.4 Non-Functional Architectural Requirements for ENI Operation
	5.5 Reference Point Requirements
	5.6 Knowledge Modeling Requirements
	5.7 Control Loop Processing Requirements
	5.8 Functional Block Processing Requirements
	5.8.1 Context Processing Requirements
	5.8.2 Cognition Requirements
	5.8.3 Policy Management Requirements

	5.9 AI Modelling and Training Model Requirements
	5.10 API Requirements

	6 ENI Reference Architectural Framework
	6.1 Introduction
	6.2 Design Principles of the ENI System architecture
	6.2.1 Overview
	6.2.2 Nesting of Functional Blocks
	6.2.3 Communication and Interaction
	6.2.3.1 Introduction
	6.2.3.2 Discovery
	6.2.3.3 Direct Communication
	6.2.3.4 Indirect Communication
	6.2.3.5 Negotiation
	6.2.3.5.1 Introduction
	6.2.3.5.2 Distributive Negotiation
	6.2.3.5.3 Integrative Negotiation
	6.2.3.5.4 Functional Model: an Informative Example
	6.2.3.5.5 Usage

	6.2.4 Administrative and Management Domains
	6.2.4.1 Introduction
	6.2.4.2 Domain Operations
	6.2.4.3 Interaction between Hierarchical Domains
	6.2.4.4 Interaction between Distributed Administrative Domains
	6.2.4.5 Interaction between Federated Administrative Domains

	6.2.5 Modelled Knowledge
	6.2.6 Bias
	6.2.6.1 Introduction
	6.2.6.2 Protection Against Bias
	6.2.6.3 Adherence to Applicable Standards to Mitigate Bias

	6.2.7 Ethics
	6.2.7.1 Introduction
	6.2.7.2 Methods to Ensure Ethical Decision-Making
	6.2.7.3 Adherence to Applicable Standards and Initiatives

	6.2.8 The Assisted System
	6.2.8.1 Overview
	6.2.8.2 Class 1 and 2 Assisted Systems
	6.2.8.3 Class 3 Assisted Systems
	6.2.8.3.1 Single Class 3 Assisted Systems
	6.2.8.3.2 Multiple Class 3 Assisted Systems

	6.3 Architectural Functional Blocks of the ENI System
	6.3.1 ENI Functional Architecture with Reference Points
	6.3.1.1 Introduction
	6.3.1.2 ENI Functional Architecture with External Reference Points
	6.3.1.3 ENI Functional Architecture with Internal Reference Points
	6.3.1.4 ENI Functional Architecture with Administrative and Management Domains
	6.3.1.5 ENI Functional Architecture with Control Loops
	6.3.1.6 ENI Functional Architecture with Domains and Control Loops

	6.3.2 Data Ingestion Functional Block
	6.3.2.1 Introduction
	6.3.2.2 Motivation
	6.3.2.3 Function of the Data Ingestion Functional Block
	6.3.2.3.1 Introduction
	6.3.2.3.2 Data Filtering
	6.3.2.3.3 Data Correlation
	6.3.2.3.4 Data Cleansing
	6.3.2.3.5 Data Anonymization and Pseudonymization
	6.3.2.3.6 Data Augmentation
	6.3.2.3.7 Data Labelling and Annotation

	6.3.2.4 Operation of the Data Ingestion Functional Block
	6.3.2.4.1 Introduction
	6.3.2.4.2 Telemetry Processing
	6.3.2.4.3 Use of Metadata
	6.3.2.4.4 Use of Structure, Pattern, and Feature Matching
	6.3.2.4.5 Use of AI-based Mechanisms
	6.3.2.4.6 Use of Formal Logic and Ontologies

	6.3.3 Data Normalization Functional Block
	6.3.3.1 Introduction
	6.3.3.2 Motivation
	6.3.3.3 Function of the Data Normalization Functional Block
	6.3.3.4 Operation of the Data Normalization Functional Block
	6.3.3.4.1 Introduction
	6.3.3.4.2 Database Design Analogy (informative)
	6.3.3.4.3 Normalization for Machine Learning
	6.3.3.4.4 Applying Normalization to ENI
	6.3.3.4.5 Storing Normalized Telemetry Information
	6.3.3.4.6 Changing Telemetry Gathering using Policies
	6.3.3.4.7 Cognitive and Situation-Aware Directed Normalized Telemetry Gathering
	6.3.3.4.8 Use of Metadata
	6.3.3.4.9 Use of Structure, Pattern, and Feature Matching
	6.3.3.4.10 Use of AI-based Mechanisms
	6.3.3.4.11 Use of Formal Logic and Ontologies

	6.3.4 Knowledge Management Functional Block
	6.3.4.1 Introduction
	6.3.4.2 Inferencing
	6.3.4.3 Motivation
	6.3.4.4 Knowledge Processing
	6.3.4.4.1 Knowledge Representation and Enhancement
	6.3.4.4.2 Knowledge Normalization
	6.3.4.4.3 Transforming Data, Information, and Knowledge into Wisdom
	6.3.4.4.4 Semantic Bus

	6.3.4.5 Repositories
	6.3.4.5.1 Overview
	6.3.4.5.2 Data Repository
	6.3.4.5.3 Model Repositories
	6.3.4.5.4 Knowledge Repositories
	6.3.4.5.5 Blackboard Repositories
	6.3.4.5.6 Repository Operation
	6.3.4.5.7 Semantically Augmented Query and Learning

	6.3.4.6 Function of the Knowledge Management Functional Block
	6.3.4.6.1 Introduction
	6.3.4.6.2 Grounding Knowledge Using Semantics
	6.3.4.6.3 Resolving Knowledge Conflicts
	6.3.4.6.4 Knowledge Distribution

	6.3.4.7 Operation of the Knowledge Management Functional Block
	6.3.4.7.1 Introduction
	6.3.4.7.2 Observe Functionality
	6.3.4.7.3 Orient Functionality
	6.3.4.7.4 Decide Functionality
	6.3.4.7.5 Model-Driven-Enhanced Decide Functionality
	6.3.4.7.6 Act Functionality
	6.3.4.7.7 Model-Driven-Enhanced Act Functionality
	6.3.4.7.8 Learning-Enhanced OODA
	6.3.4.7.9 Reasoning-Enhanced OODA

	6.3.5 Context-Aware Management Functional Block
	6.3.5.1 Introduction
	6.3.5.2 Motivation
	6.3.5.3 Function of the Context-Aware Management Functional Block
	6.3.5.3.1 Introduction
	6.3.5.3.2 Modelling and Representation of Context Awareness
	6.3.5.3.3 Processing Contextual Updates

	6.3.5.4 Operation of the Context-Aware Management Functional Block

	6.3.6 Cognition Management Functional Block
	6.3.6.1 Introduction
	6.3.6.2 Motivation
	6.3.6.3 Function of the Cognition Management Functional Block
	6.3.6.3.1 Introduction (informative)
	6.3.6.3.2 The Symbolic Approach (informative)
	6.3.6.3.3 The Connectionist Approach (informative)
	6.3.6.3.4 Cognitive System
	6.3.6.3.5 Cognition Model

	6.3.6.4 Operation of the Cognition Management Functional Block

	6.3.7 Situational Awareness Functional Block
	6.3.7.1 Introduction
	6.3.7.2 Motivation
	6.3.7.3 Function of Situational Awareness
	6.3.7.4 Operation of the Situational Awareness Functional Block
	6.3.7.4.1 Introduction
	6.3.7.4.2 Use of Memory and the Cognition Model
	6.3.7.4.3 Definition and Management of Goals to be Achieved
	6.3.7.4.4 Architecture of a Cognitive Functional Block
	6.3.7.4.5 Leveraging Historical Situation Information

	6.3.7.5 Difference between Context Awareness and Situational Awareness
	6.3.7.6 Difference between Cognition Management and Situational Awareness

	6.3.8 Model Driven Engineering Functional Block
	6.3.8.1 Introduction
	6.3.8.2 Motivation
	6.3.8.3 Function of the Model Driven Engineering Functional Block
	6.3.8.4 Operation of the Model Driven Engineering Functional Block
	6.3.8.4.1 Introduction
	6.3.8.4.2 Knowledge Data Fusion, Transformation, and Processing
	6.3.8.4.3 Knowledge Transformation into Policy Information

	6.3.9 Policy Management Functional Block
	6.3.9.1 Introduction
	6.3.9.2 Motivation
	6.3.9.3 Modelling and Representing Types of Policies
	6.3.9.3.1 Introduction
	6.3.9.3.2 Reuse of the MEF Policy Model
	6.3.9.3.3 Reuse of the MEF Core Model
	6.3.9.3.4 Types of Policies Used in ENI
	6.3.9.3.5 Overview of a Unified Policy Information Model

	6.3.9.4 Processing Policies
	6.3.9.4.1 Introduction
	6.3.9.4.2 Constructing Policies: Parsers vs. Compilers vs. Interpreters
	6.3.9.4.3 Policy Languages
	6.3.9.4.4 Policy Scope

	6.3.9.5 Function of the Policy Management Functional Block
	6.3.9.6 Operation of the Policy Management Functional Block
	6.3.9.6.1 Introduction
	6.3.9.6.2 The Policy Continuum
	6.3.9.6.3 Policy Management Architecture
	6.3.9.6.4 Policy Management Federation
	6.3.9.6.5 Constructing, Deploying, and Activating Policies
	6.3.9.6.6 Managing Policies
	6.3.9.6.7 Deactivating and Removing Policies

	6.3.10 Denormalization Functional Block
	6.3.10.1 Introduction
	6.3.10.2 Motivation
	6.3.10.3 Function of the Denormalization Functional Block
	6.3.10.4 Operation of the Denormalization Functional Block

	6.3.11 Output Generation Functional Block
	6.3.11.1 Introduction
	6.3.11.2 Motivation
	6.3.11.3 Function of the Output Generation Functional Block
	6.3.11.4 Operation of the Output Generation Functional Block
	6.3.11.4.1 Introduction
	6.3.11.4.2 Treating Output Generation as the Inverse of Normalization

	6.4 API Broker
	6.4.1 Introduction
	6.4.2 Motivation
	6.4.3 Function of the API Broker
	6.4.4 Operation of the API Broker

	6.5 Communication Between Functional Blocks
	6.5.1 Introduction
	6.5.2 Common Communication Requirements
	6.5.3 Recommended Communication Patterns to be Used Within ENI
	6.5.3.1 Introduction
	6.5.3.2 Remote Procedure Calls and Remote Method Invocations
	6.5.3.3 Batch File Exchange
	6.5.3.4 Shared Database
	6.5.3.5 Messaging
	6.5.3.5.1 Introduction
	6.5.3.5.2 Common Requirements of Messaging Systems
	6.5.3.5.3 Messaging Functionality

	6.5.4 Recommended Communication Patterns to be Used Between ENI and External Systems

	6.6 Security Considerations

	7 Reference Points
	7.1 Introduction
	7.2 External Reference Point Overview
	7.3 External Reference Point Definitions
	7.3.1 Reference Point Eoss-eni-dat
	7.3.2 Reference Point Eoss-eni-cmd
	7.3.3 Reference Point Eoss-eni-pol
	7.3.4 Reference Point Eapp-eni-ctx
	7.3.5 Reference Point Eapp-eni-oth
	7.3.6 Reference Point Eapp-eni-kno
	7.3.7 Reference Point Eapp-eni-pol
	7.3.8 Reference Point Ebss-eni-dat
	7.3.9 Reference Point Ebss-eni-cmd
	7.3.10 Reference Point Ebss-eni-pol
	7.3.11 Reference Point Eusr-eni-pol
	7.3.12 Reference Point Eor-eni-dat
	7.3.13 Reference Point Eor-eni-cmd
	7.3.14 Reference Point Eor-eni-pol
	7.3.15 Reference Point Einf-eni-dat
	7.3.16 Reference Point Einf-eni-cmd
	7.3.17 Reference Point Eeni-api-in
	7.3.18 Reference Point Eeni-api-out
	7.3.19 Reference Point Eeni-api-dev
	7.3.20 Reference Point Eeni-api-run
	7.3.21 Reference Point Eeni-api-dmg
	7.3.22 Reference Point Eeni-api-emg

	7.4 External Reference Points Protocol Specification
	7.4.1 Introduction
	7.4.2 Generic Protocols for use with External Reference Points
	7.4.3 Specific Protocols for use with External Reference Points
	7.4.3.1 gRPC and HTTP/2
	7.4.3.2 GraphQL and HTTP/1.1
	7.4.3.3 HATEOAS and HTTP/1.1
	7.4.3.4 REST and HTTP/1.1

	7.5 ENI API Overview
	7.5.1 Introduction
	7.5.2 API Architectural Styles
	7.5.2.1 Introduction
	7.5.2.2 Challenges in API Architectures
	7.5.2.3 REST API Style
	7.5.2.4 HATEOAS API Style
	7.5.2.5 GraphQL API Style
	7.5.2.6 gRPC API Style
	7.5.2.7 ENI API Architectural Style Recommendations

	7.5.3 ENI API Functional Blocks
	7.5.3.1 ENI API Development Functional Block
	7.5.3.1.1 Introduction
	7.5.3.1.2 ENI Broker API Orchestration Layer
	7.5.3.1.3 ENI Broker API Management Functional Blocks

	7.5.3.2 ENI API Runtime Functional Block
	7.5.3.3 ENI Management Services Functional Block
	7.5.3.4 ENI Security Services Functional Block
	7.5.3.5 ENI Analytic Services Functional Block

	7.5.4 ENI API System Deployment Models
	7.5.4.1 On Premise vs. Cloud-Based Deployment
	7.5.4.2 ENI API Architecture Environment
	7.5.4.3 Securing the ENI API Broker from the Internet
	7.5.4.4 Scaling the ENI API Broker

	7.6 Internal Reference Point Overview
	7.7 Internal Reference Point Definitions
	7.7.1 Reference Point Iing-norm
	7.7.2 Reference Point Inorm-sem
	7.7.3 Reference Point Isem-km
	7.7.4 Reference Point Isem-ca
	7.7.5 Reference Point Isem-cog
	7.7.6 Reference Point Isem-sa
	7.7.7 Reference Point Isem-mde
	7.7.8 Reference Point Isem-pm
	7.7.9 Reference Point Isem-denorm
	7.7.10 Reference Point Idenorm-out

	7.8 Internal Reference Point Protocol Specification
	7.8.1 Introduction
	7.8.2 Generic Protocols for use with Internal Reference Points
	7.8.3 Specific Protocols for use with Internal Reference Points

	8 ENI API Design
	8.1 Introduction
	8.2 Design Goals
	8.3 Methodology for Constructing APIs
	8.3.1 Introduction
	8.3.2 Common API Paradigms
	8.3.3 gRPC API Construction
	8.3.4 gRPC Integration

	8.4 Overview of API Functionality
	8.4.1 Introduction
	8.4.2 External Reference Point Eoss-eni-dat
	8.4.3 External Reference Point Eoss-eni-cmd
	8.4.4 External Reference Point Eoss-eni-pol
	8.4.5 External Reference Point Eapp-eni-ctx
	8.4.6 External Reference Point Eapp-eni-oth
	8.4.7 External Reference Point Eapp-eni-kno
	8.4.8 External Reference Point Eapp-eni-pol
	8.4.9 External Reference Point Ebss-eni-dat
	8.4.10 External Reference Point Ebss-eni-cmd
	8.4.11 External Reference Point Ebss-eni-pol
	8.4.12 External Reference Point Eusr-eni-pol
	8.4.13 External Reference Point Eor-eni-dat
	8.4.14 External Reference Point Eor-eni-cmd
	8.4.15 External Reference Point Eor-eni-pol
	8.4.16 External Reference Point Einf-eni-dat
	8.4.17 External Reference Point Einf-eni-cmd

	9 Interacting with Other Standardized Architectures
	9.1 Introduction
	9.2 Generic Architecture
	9.3 Generic SDO Interaction Architecture
	9.3.1 Introduction

	9.4 Interaction with NFV MANO
	9.4.1 High Level description of the NFV MANO - ENI Interaction
	9.4.2 Initial proposals for interaction scenarios
	9.4.2.1 Introduction
	9.4.2.2 Scenario 1: Passive Notification to NFV MANO
	9.4.2.3 Scenario 2: Active Data Analysis for NFV MANO
	9.4.2.4 Scenario 3: Active Assistance to the NFV MANO System
	9.4.2.5 Scenario 4: Active Assistance to the Assisted System

	9.4.3 Interaction Scenarios for Assisted Policy Management in NFV MANO

	9.5 Interaction with the MEF LSO RA

	10 Areas for Future Study
	10.1 Open Issues for the Present Document
	10.2 Issues for Future Study

	Annex A (informative): SDO and Open Source Interactions
	A.1 Integration with Other SDOs and Open Source Communities
	A.1.1 Introduction
	A.1.2 Interaction with BBF CloudCO

	A.2 Interaction with Open Source Communities

	Annex B (informative): ENI Architectural Evolution
	B.1 ENI Architecture Evolution Motivation
	B.2 ENI Architecture Evolution Proposal
	B.3 Proposed Definition of the ENI Phases

	Annex C (informative): Bibliography
	History

